[1]GUO Yinan,WANG Bin,GONG Dunwei,et al.Multi-layer attention knowledge representation learning by integrating entity structure with semantics[J].CAAI Transactions on Intelligent Systems,2023,18(3):577-588.[doi:10.11992/tis.202204026]
Copy

Multi-layer attention knowledge representation learning by integrating entity structure with semantics

References:
[1] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. Vancouver: ACM, 2008: 1247–1250.
[2] MILLER G A. WordNet[J]. Communications of the ACM, 1995, 38(11): 39–41.
[3] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. Banff: ACM, 2007: 697–706.
[4] 徐有为, 张宏军, 程恺, 等. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30–50
XU Youwei, ZHANG Hongjun, CHENG Kai, et al. Comprehensive survey on knowledge graph embedding[J]. Computer engineering and applications, 2022, 58(9): 30–50
[5] 张晓林. 机构知识库的发展趋势与挑战[J]. 现代图书情报技术, 2014(2): 1–7
ZHANG Xiaolin. Trends and challenges for institutional repositories[J]. New technology of library and information service, 2014(2): 1–7
[6] LEHMANN J, ISELE R, JAKOB M, et al. DBpedia–A large-scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic web, 2015, 6(2): 167–195.
[7] HACHEY B, RADFORD W, NOTHMAN J, et al. Evaluating entity linking with wikipedia[J]. Artificial intelligence, 2013, 194: 130–150.
[8] 张明星, 张骁雄, 刘姗姗, 等. 利用知识图谱的推荐系统研究综述[J]. 计算机工程与应用, 2023, 59(4): 30–42
ZHANG Mingxing, ZHANG Xiaoxiong, LIU Shanshan, et al. Review of recommendation systems using knowledge graph[J]. Computer engineering and applications, 2023, 59(4): 30–42
[9] 王智悦, 于清, 王楠, 等. 基于知识图谱的智能问答研究综述[J]. 计算机工程与应用, 2020, 56(23): 1–11
WANG Zhiyue, YU Qing, WANG Nan, et al. Survey of intelligent question answering research based on knowledge graph[J]. Computer engineering and applications, 2020, 56(23): 1–11
[10] LIU Zhiyuan, SUN Maosong, LIN Yankai, et al. Knowledge representation learning: a review[J]. Journal of computer research and development, 2016, 53(2): 247–261.
[11] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. Lake Tahoe: ACM, 2013: 2787–2795.
[12] MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. Lake Tahoe: ACM, 2013: 3111–3119.
[13] WANG Zhen, ZHANG Jianwen, FENG Jianlin, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence. Québec City: ACM, 2014: 1112–1119.
[14] LIN Yankai, LIU Zhiyuan, SUN Maosong, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin: ACM, 2015: 2181–2187.
[15] JI Guoliang, HE Shizhu, XU Liheng, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: Association for Computational Linguistics, 2015: 687?696.
[16] JI Guoliang, LIU Kang, HE Shizhu, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: ACM, 2016: 985–991.
[17] XIAO Han, HUANG Minlie, HAO Yu, et al. TransA: an adaptive approach for knowledge graph embedding[EB/OL]. (2015?09?18)[2022?04?22].https://arxiv.org/abs/1509.05490.
[18] HE Shizhu, LIU Kang, JI Guoliang, et al. Learning to represent knowledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne: ACM, 2015: 623–632.
[19] XIAO Han, HUANG Minlie, ZHU Xiaoyan. TransG: a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: Association for Computational Linguistics, 2016: 2316?2325.
[20] 饶官军, 古天龙, 常亮, 等. 基于相似性负采样的知识图谱嵌入[J]. 智能系统学报, 2020, 15(2): 218–226
RAO Guanjun, GU Tianlong, CHANG Liang, et al. Knowledge graph embedding based on similarity negative sampling[J]. CAAI transactions on intelligent systems, 2020, 15(2): 218–226
[21] SOCHER R, CHEN Danqi, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1. New York: ACM, 2013: 926–934.
[22] SANTOS C N D, XIANG Bing, ZHOU Bowen. Classifying relations by ranking with convolutional neural networks[EB/OL]. (2015?04?24)[2022?04?22].https://arxiv.org/abs/1504.06580.
[23] CHEN Yahui. Convolutional neural network for sentence classification[D]. Master’s thesis: University of Waterloo, 2015.
[24] ZHANG Dongxu, YUAN Bin, WANG Dong, et al. Joint semantic relevance learning with text data and graph knowledge[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Beijing: Association for Computational Linguistics, 2015: 32?40.
[25] LE Q V, MIKOLOV T. Distributed representations of sentences and documents[EB/OL]. (2014?05?16)[2022?04?22].https://arxiv.org/abs/1405.4053.
[26] XU JIACHENG, CHEN KAN, QIU XIPENG, et al. Knowledge graph representation with jointly structural and textual encoding[EB/OL]. (2016?11?26)[2022?04?22].https://arxiv.org/abs/1611.08661.
[27] XIE Ruobing, LIU Zhiyuan, JIA Jia, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: ACM, 2016: 2659–2665.
[28] MIKOLOV T, CHEN KAI, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013?01?16)[2022?04?22].https://arxiv.org/abs/1301.3781.
[29] WANG Zhigang, LI Juanzi. Text-enhanced representation learning for knowledge graph[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 1293–1299.
[30] WANG Peng, ZHOU Jing, LIU Yuzhang, et al. TransET: knowledge graph embedding with entity types[J]. Electronics, 2021, 10(12): 1407.
[31] HU Linmei, ZHANG Mengmei, LI Shaohua, et al. Text-graph enhanced knowledge graph representation learning[J]. Frontiers in artificial intelligence, 2021, 4: 697856.
[32] JI Zizheng, LEI Zhengchao, SHEN Tingting, et al. Joint representations of knowledge graphs and textual information via reference sentences[J]. IEICE transactions on information and systems, 2020, E103.D(6): 1362–1370.
[33] CHEN Wenrui, HONG Dongpao, ZHENG Chao. Learning knowledge graph embedding with entity descriptions based on LSTM networks[C]//2020 IEEE International Symposium on Product Compliance Engineering-Asia. Chongqing: IEEE, 2021: 1?7.
[34] ZHAO Feng, XU Tao, JIN L, et al. Convolutional network embedding of text-enhanced representation for knowledge graph completion[J]. IEEE Internet of Things journal, 2021, 8(23): 16758–16769.
[35] WU Jiajun, LI Bohan, JI Ye, et al. Text-enhanced knowledge graph representation model in hyperbolic space[C]//International Conference on Advanced Data Mining and Applications. Cham: Springer, 2022: 137?149.
[36] DO P, PHAM P. W-KG2Vec: a weighted text-enhanced meta-path-based knowledge graph embedding for similarity search[J]. Neural computing and applications, 2021, 33(23): 16533–16555.
[37] ZHENG Wenbo, YAN Lan, GOU Chao, et al. Pay attention to doctor-patient dialogues: multi-modal knowledge graph attention image-text embedding for COVID-19 diagnosis[J]. Information fusion, 2021, 75: 168–185.
[38] JIANG Tingting, WANG Hao, LUO Xiangfeng, et al. MIFAS: Multi-sourceheterogeneous information fusion with adaptive importance sampling for link prediction[J]. Expert systems, 2022, 39(4): e12888.
[39] CHEN Junfan, XU Jie, BO Manhui, et al. Augmenting embedding projection with entity descriptions for knowledge graph completion[J]. IEEE access, 2021, 9: 159955–159964.
[40] CHENG Jingwei, ZHANG Fu, YANG Zhi. Knowledge graph representation learning with multi-scale capsule-based embedding model incorporating entity descriptions[J]. IEEE acscess, 2020, 8: 203028–203038.
[41] WANG Yashen, ZHANG Huanhuan, LI Yifeng, et al. Simplified representation learning model based on parameter-sharing for knowledge graph completion[C]// China Conference on Information Retrieval. Cham: Springer, 2019: 67?78.
[42] DEVLIN J, CHANG MING-WEI, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018?10?11)[2022?04?22]. https://arxiv.org/abs/1810.04805.
[43] TOUTANOVA K, CHEN Danqi. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality. Beijing: Association for Computational Linguistics, 2015: 57?66.
[44] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of COMPSTAT’2010. Paris: SpringerLink, 2010: 177?186.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems