[1]CHEN Baoguo,DENG Ming.An incremental algorithm for the neighborhood multi-granulation rough set model based on object update[J].CAAI Transactions on Intelligent Systems,2023,18(3):562-576.[doi:10.11992/tis.202112042]
Copy

An incremental algorithm for the neighborhood multi-granulation rough set model based on object update

References:
[1] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341–356.
[2] BARMAN B, PATRA S. Variable precision rough set based unsupervised band selection technique for hyperspectral image classification[J]. Knowledge-based systems, 2020, 193: 105414.
[3] 盛魁, 王伟, 卞显福, 等. 混合数据的邻域区分度增量式属性约简算法[J]. 电子学报, 2020, 48(4): 682–696
SHENG Kui, WANG Wei, BIAN Xianfu, et al. Neighborhood discernibility degree incremental attribute reduction algorithm for mixed data[J]. Acta electronica sinica, 2020, 48(4): 682–696
[4] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949–970.
[5] QIAN Yuhua, ZHANG Hu, SANG Yanli, et al. Multigranulation decision-theoretic rough sets[J]. International journal of approximate reasoning, 2014, 55(1): 225–237.
[6] QIAN Jin, LIU Caihui, YUE Xiaodong. Multigranulation sequential three-way decisions based on multiple thresholds[J]. International journal of approximate reasoning, 2019, 105: 396–416.
[7] XU Yi. Multigranulation rough set model based on granulation of attributes and granulation of attribute values[J]. Information sciences, 2019, 484: 1–13.
[8] LIN Guoping, QIAN Yuhua, LI Jinjin. NMGRS: Neighborhood-based multigranulation rough sets[J]. International journal of approximate reasoning, 2012, 53(7): 1080–1093.
[9] 骆公志, 钱佳丽. 基于多阈值的变精度邻域多粒度粗糙决策方法[J]. 计算机应用研究, 2018, 35(10): 2943–2946,3010
LUO Gongzhi, QIAN Jiali. Neighborhood multi-granulation rough set based on multi-threshold for variable precision decisions[J]. Application research of computers, 2018, 35(10): 2943–2946,3010
[10] 刘丹, 徐立新, 李敬伟. 不完备邻域多粒度决策理论粗糙集与三支决策[J]. 计算机应用与软件, 2019, 36(5): 145–157
LIU Dan, XU Lixin, LI Jingwei. Incomplete neighborhood multi-granulation decision-theoretic rough set and three-way decision[J]. Computer applications and software, 2019, 36(5): 145–157
[11] 程昳, 刘勇. 基于邻域多粒度粗糙集的知识发现模型[J]. 计算机科学, 2019, 46(6): 224–230
CHENG Yi, LIU Yong. Knowledge discovery model based on neighborhood multi-granularity rough sets[J]. Computer science, 2019, 46(6): 224–230
[12] LUO Chuan, LI Tianrui, YI Zhang, et al. Matrix approach to decision-theoretic rough sets for evolving data[J]. Knowledge-based systems, 2016, 99: 123–134.
[13] WEI Wei, WU Xiaoying, LIANG Jiye, et al. Discernibility matrix based incremental attribute reduction for dynamic data[J]. Knowledge-based systems, 2018, 140: 142–157.
[14] SHU Wenhao, QIAN Wenbin, XIE Yonghong. Incremental feature selection for dynamic hybrid data using neighborhood rough set[J]. Knowledge-based systems, 2020, 194: 105516.
[15] HUANG Yanyong, GUO Kejun, LI Zhong, et al. Matrix representation of the conditional entropy for incremental feature selection on multi-source data[J]. Information sciences, 2022, 591: 263–286.
[16] 沈玉峰. 基于矩阵方法的区分度增量式属性约简算法[J]. 计算机应用与软件, 2020, 37(9): 235–245,257
SHEN Yufeng. A discrimination degree incremental attribute reduction based on matrix method[J]. Computer applications and software, 2020, 37(9): 235–245,257
[17] YANG Xin, YANG Yuxuan, LUO Junfang, et al. A unified incremental updating framework of attribute reduction for two-dimensionally time-evolving data[J]. Information sciences, 2022, 601: 287–305.
[18] HUANG Qianqian, LI Tianrui, HUANG Yanyong, et al. Incremental three-way neighborhood approach for dynamic incomplete hybrid data[J]. Information sciences, 2020, 541: 98–122.
[19] 杨臻, 邱保志. 混合信息系统的动态变精度粗糙集模型[J]. 控制与决策, 2020, 35(2): 297–308
YANG Zhen, QIU Baozhi. Dynamic variable precision rough set model of mixed information system[J]. Control and decision, 2020, 35(2): 297–308
[20] 刘丹, 李敬伟. 基于矩阵的双论域模糊概率粗糙集增量更新算法[J]. 控制与决策, 2021, 36(3): 553–564
LIU Dan, LI Jingwei. Incremental updating of fuzzy probability rough sets over two universes based on matrix method[J]. Control and decision, 2021, 36(3): 553–564
[21] YANG Xibei, QI Yong, YU Hualong, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-based systems, 2014, 64: 59–69.
[22] HU Chengxiang, LIU Shixi, LIU Guoxiu. Matrix-based approaches for dynamic updating approximations in multigranulation rough sets[J]. Knowledge-based systems, 2017, 122: 51–63.
[23] HU Chengxiang, ZHANG Li. Efficient approaches for maintaining dominance-based multigranulation approximations with incremental granular structures[J]. International journal of approximate reasoning, 2020, 126: 202–227.
[24] HU Chengxiang, ZHANG Li, WANG Bangjun, et al. Incremental updating knowledge in neighborhood multigranulation rough sets under dynamic granular structures[J]. Knowledge-based systems, 2019, 163: 811–829.
[25] 徐怡, 孙伟康, 王泉. 邻域多粒度粗糙集知识更新增量算法[J]. 小型微型计算机系统, 2020, 41(5): 908–918
XU Yi, SUN Weikang, WANG Quan. Incremental algorithm for knowledge updating of neighborhood multigranulation rough set[J]. Journal of Chinese computer systems, 2020, 41(5): 908–918
[26] HU Chengxiang, ZHANG Li. A dynamic framework for updating neighborhood multigranulation approximations with the variation of objects[J]. Information sciences, 2020, 519: 382–406.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems