[1]LU Juan,CHEN Chunyi.A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction[J].CAAI Transactions on Intelligent Systems,2023,18(3):459-467.[doi:10.11992/tis.202112011]
Copy

A denoised method by fusing recursive auto-encoder decorder for Monte Carlo rendering image reconstruction

References:
[1] LEHTINEN J, KARRAS T, LAINE S, et al. Gradient-domain metropolis light transport[J]. ACM transactions on graphics, 2013, 32(4): 1–12.
[2] ROUSSELLE F, KNAUS C, ZWICKER M. Adaptive rendering with non-local means filtering[J]. ACM transactions on graphics, 2012, 31(6): 1–11.
[3] KALANTARI N K, BAKO S, SEN P. A machine learning approach for filtering Monte Carlo noise[J]. ACM transactions on graphics, 2015, 34(4): 1–12.
[4] MENG Xiaoxu, ZHENG Quan, Varshney A, et al. Real-time Monte Carlo denoising with the neural bilateral grid[C]//Eurographics Symposium on Rendering 2020. London: ESRL, 2020: 13-24.
[5] CHAITANYA C R A, KAPLANYAN A S, SCHIED C, et al. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder[J]. ACM transactions on graphics, 2017, 36(4): 1–12.
[6] 谢川, 王勇超, 林志洁, 等. 基于对抗生成网络的蒙特卡罗噪声去除算法[J]. 模式识别与人工智能, 2018, 31(11): 1047–1060
XIE Chuan, WANG Yongchao, LIN Zhijie, et al. Monte Carlo noise removal algorithm based on adversarial generative network[J]. Pattern recognition and artificial intelligence, 2018, 31(11): 1047–1060
[7] VOGELS T, NOVáK J, ROUSSELLE F, et al. Kerneel predicting convolutional neural networks for denoising[P]. US20180293711: 15/814190, 2018-11-10.
[8] WONG K M, WONG T T. Deep residual learning for denoising Monte Carlo renderings[J]. Computational visual media, 2019, 5(3): 239–255.
[9] XU Bing, ZHANG Junfei, WANG Rui, et al. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation[J]. ACM transactions on graphics, 2019, 38(6): 1–12.
[10] VICINI D, ADLER D, NOVáK J, et al. Denoising deep Monte Carlo renderings[J]. Computer graphics forum, 2019, 38(1): 316–327.
[11] HUO Yuchi, YOON S E. A survey on deep learning-based Monte Carlo denoising[J]. Computational visual media, 2021, 7(2): 169–185.
[12] 王婕, 罗静蕊, 岳广德. 一种改进的多尺度融合并行稠密残差去噪网络[J]. 小型微型计算机系统, 2021, 42(4): 798–804
WANG Jie, LUO Jingrui, YUE Guangde. Improved parallel residual dense denoising network based on multi-scale fusion[J]. Journal of Chinese computer systems, 2021, 42(4): 798–804
[13] RONNEBERGER O. Invited talk: U-net convolutional networks for biomedical image segmentation[C]//Bildverarbeitung für die Medizin 2017. Berlin: Springer Vieweg, 2017: 3?3.
[14] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI Press, 2017, 31(1): 11231.
[15] WANG Tianyang, SUN Mingxuan, HU Kaoning. Dilated deep residual network for image denoising[C]//2017 IEEE 29th International Conference on Tools with Artificial Intelligence. Boston: IEEE, 2018: 1272?1279.
[16] BENEDIKT Bitterli. Rendering resources[EB/OL]. [2021?12?06].https://benedikt-bitterli.me/resources/.
[17] LIN Weiheng, WANG Beibei, WANG Lu, et al. A detail preserving neural network model for Monte Carlo denoising[J]. Computational visual media, 2020, 6(2): 157–168.
[18] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[EB/OL]. (2014?06?09) [2021?12?06].https://arxiv.org/abs/1406.2199.
[19] KREINOVICH V, NGUYEN H, OUNCHAROEN R. How to estimate forecasting quality: a system- motivated derivation of symmetric mean absolute percentage error and other similar characteristics[EB/OL]. [2021?12?06]. http://www.cs.utep.edu/vladik/2014/tr14-53.pdf.
[20] ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5967?5976.
[21] 许家荣. 核预测与GAN特征保持的蒙特卡罗渲染图像去噪[D]. 广州: 华南理工大学, 2020.
XU Jiarong. Denoising of Monte Carlo renderings based on kernel prediction and feature-preserved GAN[D]. Guangzhou: South China University of Technology, 2020.
[22] 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758–1763
TONG Yubing, ZHANG Qishan, QI Yunping. Image quality assessing by combining PSNR and SSIM[J]. Journal of image and graphics, 2006, 11(12): 1758–1763
[23] 林椹尠, 张梦凯, 吴成茂. 利用残差密集网络的运动模糊复原方法[J]. 智能系统学报, 2021, 16(3): 442–448
LIN Zhenxian, ZHANG Mengkai, WU Chengmao. Image restoration with residual dense network[J]. CAAI transactions on intelligent systems, 2021, 16(3): 442–448
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems