[1]GUO Maozu,WANG Sijia,WANG Pengyue,et al.Small sample block quality evaluation based on satellite images[J].CAAI Transactions on Intelligent Systems,2022,17(6):1254-1262.[doi:10.11992/tis.202111049]
Copy

Small sample block quality evaluation based on satellite images

References:
[1] RUNDLE A G, BADER M D M, RICHARDS C A, et al. Using Google Street View to audit neighborhood environments[J]. American journal of preventive medicine, 2011, 40(1): 94–100.
[2] NAIK N, PHILIPOOM J, RASKAR R, et al. Streetscore: predicting the perceived safety of one million streetscapes[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Columbus: IEEE, 2014 : 793-799.
[3] EWING R, CERVERO R. Travel and the built environment[J]. Journal of the American planning association, 2010, 76(3): 265–294.
[4] 韩君伟. 步行街道景观视觉评价研究[D]. 成都: 西南交通大学, 2018.
HAN Junwei. A visual evaluation study for walking streetscape[D]. Chengdu: Southwest Jiaotong University, 2018.
[5] 龙瀛, 周垠. 街道活力的量化评价及影响因素分析: 以成都为例[J]. 新建筑, 2016(1): 52–57
LONG Ying, ZHOU Yin. Quantitative evaluation on street vibrancy and its impact factors: a case study of Chengdu[J]. New architecture, 2016(1): 52–57
[6] 唐婧娴, 龙瀛. 特大城市中心区街道空间品质的测度: 以北京二三环和上海内环为例[J]. 规划师, 2017, 33(2): 68–73
TANG Jingxian, LONG Ying. Metropolitan street space quality evaluation: second and third ring of Beijing, inner ring of Shanghai[J]. Planners, 2017, 33(2): 68–73
[7] 樊钧, 唐皓明, 叶宇. 街道慢行品质的多维度评价与导控策略: 基于多源城市数据的整合分析[J]. 规划师, 2019, 35(14): 5–11
FAN Jun, TANG Haoming, YE Yu. Multi-dimensional evaluation and guidance for quality pedestrian street space: an analysis of multi-sourced urban data[J]. Planners, 2019, 35(14): 5–11
[8] WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning[J]. ACM computing surveys, 2021, 53(3): 63.
[9] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//NIPS’16: Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3637-3645.
[10] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[EB/OL]. [2021-07-13]. http://www.cs.utoronto.ca/~rsalakhu/papers/oneshot1.pdf.
[11] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). New York: CAI, 2017: 4080–4090.
[12] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: relation network for few-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1199-1208.
[13] REN M, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. (2018-01-01)[ 2021-07-13]. https://doc.taixueshu.com/foreign/arXiv180300676.html.
[14] SIMON C, KONIUSZ P, HARANDI M. Projective subspace networks for few-shot learning[C]// The 7th International Conference on Learning Representations (ICLR2019). New Orleans, 2019.
[15] YOON S W, SEO J, MOON J. TapNet: neural network augmented with task-adaptive projection for few-shot learning[EB/OL]. (2019-01-01)[ 2021-07-13]. https://arxiv.org/abs/1905.06549.
[16] DEVOS A, GROSSGLAUSER M. Subspace networks for few-shot classification[EB/OL]. (2019-03-31)[ 2021-07-13]. https://arxiv.org/abs/1905.13613.
[17] SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 4135-4144.
[18] EDELMAN A, ARIAS T A, SMITH S T. The geometry of algorithms with orthogonality constraints[J]. SIAM journal on matrix analysis and applications, 1998, 20(2): 303–353.
[19] 李美艳. 基于空间句法的城市街道空间研究: 以北京市展览馆路内街道为例[J]. 中国建筑装饰装修, 2021(9): 128–129
LI Meiyan. Research on urban street space based on Spatial Syntax: take the sub district inside the exhibition hall road of Beijing as an example[J]. Interior architecture of China, 2021(9): 128–129
[20] 李美艳, 张润萌, 欧阳文. 商业POI布局和城市街区空间结构的相关性研究: 以北京西城区展览馆路街区为例[J]. 北京规划建设, 2021(5): 125–127
LI Meiyan, ZHANG Runmeng, OUYANG Wen. Study on the correlation between commercial POI layout and urban block spatial structure: a case study of zhanguan road block in Xicheng District of Beijing[J]. Beijing planning review, 2021(5): 125–127
[21] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[EB/OL]. (2019-03-31)[ 2021-07-13]. https://arxiv.org/abs/1703.03400.
[22] 张秋雁, 杨忠, 姜遇红, 等. 一种基于CNN的航拍输电线路图像分类方法[J]. 应用科技, 2019, 46(6): 41–45
ZHANG Qiuyan, YANG Zhong, JIANG Yuhong, et al. CNN-based aerial image classification method for aerial transmission lines[J]. Applied science and technology, 2019, 46(6): 41–45
[23] 杨学峰, 赵冬娥. 一种多尺度压缩感知的遥感图像超分辨重建方法[J]. 应用科技, 2020, 47(4): 20–25
YANG Xuefeng, ZHAO Donge. A multi-scale copressive sensing based super-resolution reconstruction method for remote sensing images[J]. Applied science and technology, 2020, 47(4): 20–25
[24] 陆瑶, 王立国, 石瑶. 小样本下基于空谱特征增强的高光谱图像分类[J]. 哈尔滨工程大学学报, 2022, 43(3): 436–443
LU Yao, WANG Liguo, SHI Yao. Classification of hyperspectral images with small-sized samples based on spatial-spectral feature enhancement[J]. Journal of Harbin Engineering University, 2022, 43(3): 436–443
[25] 于凌涛, 夏永强, 闫昱晟, 等. 利用卷积神经网络分类乳腺癌病理图像[J]. 哈尔滨工程大学学报, 2021, 42(4): 567–573
YU Lingtao, XIA Yongqiang, YAN Yusheng, et al. Breast cancer pathological image classification based on a convolutional neural network[J]. Journal of Harbin Engineering University, 2021, 42(4): 567–573
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems