[1]ZHU Zhen,LIU Lifang,QI Xiaogang.Research on communication network fault classification based on data mining[J].CAAI Transactions on Intelligent Systems,2022,17(6):1228-1234.[doi:10.11992/tis.202111037]
Copy

Research on communication network fault classification based on data mining

References:
[1] WANG Yang, LI Guocai, XU Yakun, et al. An algorithmfor mining of association rules for the information communication network alarms based on swarm intelligence[J]. Mathematical problems in engineering, 2014, 2014: 1–14.
[2] WANG Yang, XU Yakun, LI Gang, et al. Association rules mining algorithm using sharing mechanism niche leaping ant colony based on apriori algorithm[J]. Journal of computational and theoretical nanoscience, 2015, 12(10): 3223–3231.
[3] LI Chuan, HUANG Xiaojun. Research on FP-Growth algorithm for massive telecommunication network alarm data based on Spark[C]//2016 7th IEEE International Conference on Software Engineering and Service Science. Beijing: IEEE, 2016: 875-879.
[4] WANG Jiantao, HE Caifeng, LIU Yijun, et al. Efficient alarm behavior analytics for telecom networks[J]. Information sciences, 2017, 402: 1–14.
[5] 罗明, 孟传伟, 黄海量. 基于加权频繁模式树的通信网络告警规则挖掘方法[J]. 计算机工程, 2016, 42(4): 190–196
LUO Ming, MENG Chuanwei, HUANG Hailiang. Alarm rule mining method in telecommunication network based on weighted frequent pattern-tree[J]. Computer engineering, 2016, 42(4): 190–196
[6] AGRAWAL R, SRIKANT R. Mining sequential patterns[C]//Proceedings of the eleventh international conference on data engineering. Taipei: IEEE, 1995: 3-14.
[7] WANG Jia, LI Hongguang, HUANG Jingwen, et al. Association rules mining based analysis of consequential alarm sequences in chemical processes[J]. Journal of loss prevention in the process industries, 2016, 41: 178–185.
[8] LIM H K, KIM Y, KIM M K. Failure prediction using sequential pattern mining in the wire bonding process[J]. IEEE transactions on semiconductor manufacturing, 2017, 30(3): 285–292.
[9] STEINDER M, SETHI A S. End-to-end service failure diagnosis using belief networks[C]// NOMS 2002. IEEE/IFIP Network Operations and Management Symposium. Management Solutions for the New Communications World’ (Cat. No. 02CH37327). Florence: IEEE, 2002: 375-390.
[10] CHAN A, MCNAUGHT K R. Using Bayesian networks to improve fault diagnosis during manufacturing tests of mobile telephone infrastructure[J]. Journal of the operational research society, 2008, 59(4): 423–430.
[11] 王开选, 杨峥, 邱雪松. 面向影响分析的电力通信网故障定位算法[J]. 北京邮电大学学报, 2014, 37(S1): 55–59
WANG Kaixuan, YANG Zheng, QIU Xuesong. Algorithm of fault locating on impact analysis in power communications network[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(S1): 55–59
[12] SHI Jingjing, YANG Lin, ZHU Axing, et al. Machine-learning variables at different scales vs. knowledge-based variables for mapping multiple soil properties[J]. Soil science society of America journal, 2018, 82(3): 645–656.
[13] 王迎春, 王远波, 王平. 基于规则的通信网故障自动诊断系统[J]. 计算机与现代化, 2010(2): 22–25
WANG Yingchun, WANG Yuanbo, WANG Ping. Rule-based automatic fault diagnosis system for communication networks[J]. Computer and modernization, 2010(2): 22–25
[14] 赵灿明, 李祝红, 陶磊, 等. 基于故障传播模型与监督学习的电力通信网络故障定位[J]. 计算机应用, 2016, 36(4): 905–908,922
ZHAO Canming, LI Zhuhong, TAO Lei, et al. Fault localization for electric power communication network based on fault propagation model and supervised learning[J]. Journal of computer applications, 2016, 36(4): 905–908,922
[15] 王菲. 基于深度学习的光网络故障定位技术研究[D]. 北京: 北京邮电大学, 2019.
WANG Fei. Research of fault location in optical networks based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
[16] 张曾莲. 基于非营利性、数据挖掘和科学管理的高校财务分析、评价与管理研究[M]. 北京: 首都经济贸易大学出版社, 2014.
[17] 张银杰, 揣锦华, 翟晓惠. 基于特征工程与集成学习的恶意软件预测研究[J]. 计算机时代, 2020(7): 7–11
ZHANG Yinjie, CHUAI Jinhua, ZHAI Xiaohui. Research on malware prediction based on feature engineering and ensemble learning[J]. Computer era, 2020(7): 7–11
[18] 胡毅, 瞿博阳, 梁静, 等. 进化集成学习算法综述[J]. 智能科学与技术学报, 2021, 3(1): 18–33
HU Yi, QU Boyang, LIANG Jing, et al. A survey on evolutionary ensemble learning algorithm[J]. Chinese journal of intelligent science and technology, 2021, 3(1): 18–33
[19] 汪星, 黄小瑜, 刘瑄璞, 等. 面向工业大数据的多层增量特征提取方法[J]. 西安电子科技大学学报, 2018, 45(4): 106–111
WANG Xing, HUANG Xiaoyu, LIU Xuanpu, et al. Multi-layer incremental feature extraction method for industrial big data[J]. Journal of Xidian University, 2018, 45(4): 106–111
[20] WANG Jing, WANG Huaichao, ZHANG Jiyang. Alarm association rules mining based on Run log for civil aviation information system[C]//2017 8th IEEE International Conference on Software Engineering and Service Science. Beijing: IEEE, 2017: 836-841.
[21] CHEN Kuoming, CHANG T H, WANG Kaicheng, et al. Machine learning based automatic diagnosis in mobile communication networks[J]. IEEE transactions on vehicular technology, 2019, 68(10): 10081–10093.
[22] JI Xilin, SHI Xiaodan, HAN Jinxi, et al. The alarm feature analysis algorithm for communication network[M]//Proceedings of the 9th International Conference on Computer Engineering and Networks. Singapore: Springer Singapore, 2020: 255-265.
[23] WANG Danshi, LOU Liqi, ZHANG Min, et al. Dealing with alarms in optical networks using an intelligent system[J]. IEEE access, 2019, 7: 97760–97770.
[24] RUIZ M, FRESI F, VELA A P, et al. Service-triggered failure identification/localization through monitoring of multiple parameters[C]//ECOC 2016: 42nd European Conference on Optical Communication. Düsseldorf: VDE, 2016: 1-3.
[25] KE G, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[J]. Advances in neural information processing systems, 2017, 30: 3146–3154.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems