[1]WANG Jiarui,LIU Nengfeng,QU Peng.Automatic identification of metallographic structure based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2022,17(4):698-706.[doi:10.11992/tis.202110035]
Copy

Automatic identification of metallographic structure based on convolutional neural network

References:
[1] KHEDKAR P, MOTAGI R, MAHAJAN P, et al. A review on advance higu strength steels[J]. International journal of current engineering and technology, 2016, 6: 240.
[2] HONEYCOMBE R W K. Steels: microstructure and properties[M]. Fourth edition, Oxford: Butterworth-Heinemann, 2017.
[3] KRAUSS G. Steels: processing, structure, and performance[M]. 2nd edition. Materials Park: ASM International, 2015.
[4] OHSER J, MüCKLICH F. Statistical analysis of microstructures in materials science[J]. Practical metallography, 2001, 38(9): 538–539.
[5] 张勇, 李恒灿, 梁明亮. 基于PSO-BP神经网络的汽车用铸造AZ91镁合金晶粒尺寸的预测[J]. 热加工工艺, 2019, 48(3): 105–107,111
ZHANG Yong, LI Hengcan, LIANG Mingliang. Prediction of grain size of cast AZ91 magnesium alloy for automobile based on PSO-BP neural network[J]. Hot working technology, 2019, 48(3): 105–107,111
[6] 张鹏, 李靖, 王文先, 等. 基于卷积神经网络模型的Gd2O3/6061Al中子屏蔽材料的力学性能预测[J]. 原子能科学技术, 2020, 54(8): 1513–1518
ZHANG Peng, LI Jing, WANG Wenxian, et al. Prediction of mechanical property of Gd2O3/6061Al neutron shielding material based on convolutional neural network model[J]. Atomic energy science and technology, 2020, 54(8): 1513–1518
[7] 曹卓, 但雅波, 李想, 等. 基于卷积神经网络模型中梯度与特征分析的材料性能优化与预测机理研究[J]. 中国材料进展, 2020, 39(5): 385–390
CAO Zhuo, DAN Yabo, LI Xiang, et al. Research on optimization and prediction mechanism of material properties based on gradient and feature analysis in convolution neural network[J]. Materials China, 2020, 39(5): 385–390
[8] 李维刚, 谌竟成, 范丽霞, 等. 基于卷积神经网络的钢铁材料微观组织自动辨识[J]. 钢铁研究学报, 2020, 32(1): 33–43
LI Weigang, CHEN Jingcheng, FAN Lixia, et al. Automatic identification of microstructure of iron and steel material based on convolutional neural network[J]. Journal of iron and steel research, 2020, 32(1): 33–43
[9] 雷涛, 李云彤, 周文政, 等. 数据与模型联合驱动的陶瓷材料晶粒分割[J]. 自动化学报, 2022, 48(4): 1137–1152
LEI Tao, LI Yuntong, ZHOU Wenzheng, et al. Grain segmentation of ceramic materials using data-driven jointing model-driven[J]. Acta automatica sinica, 2022, 48(4): 1137–1152
[10] GOLA J, BRITZ D, STAUDT T, et al. Advanced microstructure classification by data mining methods[J]. Computational materials science, 2018, 148: 324–335.
[11] WEBEL J, GOLA J, BRITZ D, et al. A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels[J]. Materials characterization, 2018, 144: 584–596.
[12] TSUTSUI K, TERASAKI H, MAEMURA T, et al. Microstructural diagram for steel based on crystallography with machine learning[J]. Computational materials science, 2019, 159: 403–411.
[13] GOLA J, WEBEL J, BRITZ D, et al. Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels[J]. Computational materials science, 2019, 160: 186–196.
[14] 邹耀斌, 雷帮军, 臧兆祥, 等. 归一化互信息量最大化导向的自动阈值选择方法[J]. 自动化学报, 2019, 45(7): 1373–1385
ZOU Yaobin, LEI Bangjun, ZANG Zhaoxiang, et al. Automatic threshold selection guided by maximizing normalized mutual information[J]. Acta automatica sinica, 2019, 45(7): 1373–1385
[15] WU Tingfan, MOVELLAN J. Semi-parametric Gaussian process for robot system identification[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura Algarve: IEEE, 2012: 725?731.
[16] VAN DER WILK M, RASMUSSEN C E, HENSMAN J. Convolutional Gaussian processes[C]//NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 2845?2854.
[17] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. London: MIT, 2006
[18] 张若非, 付强, 高斌. 深度学习模型及应用详解[M]. 北京: 电子工业出版社, 2019: 2?6.
[19] MITCHELL Tom M. 机器学习[M]. 曾华军, 张银奎译. 北京: 机械工业出版社, 2012: 60?63.
[20] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural computation, 1989, 1(4): 541–551.
[21] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[22] BOUVRIE J. Notes on convolutional neural networks[J]. In practice, 2006: 47–60.
[23] DUDA Richard O, HART Peter E, STORK David G. 模式分类[M]. 李宏东, 姚天翔译. 北京: 机械工业出版社, 2004.
[24] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904–1916.
[25] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL]. New York: arXiv, 2013. (2013?01?16)[2021?10?29].https://arxiv.org/abs/1301.3557.
[26] LE CUN Y, BOSER B, DENKER J S, et al. Handwritten digit recognition with a back-propagation network[C]//NIPS’89: Proceedings of the 2nd International Conference on Neural Information Processing Systems. New York: ACM, 1989: 396?404.
[27] KIM H, NAM H, JUNG W, et al. Performance analysis of CNN frameworks for GPUs[C]//2017 IEEE International Symposium on Performance Analysis of Systems and Software. New York: IEEE, 2017: 55?64.
[28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems 25. Nevada: Curran Associates, 2012: 1097?1105.
[29] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. New York: arXiv, 2014. (2014?09?04)[2021?10?29].https://arxiv.org/abs/1409.1556.
[30] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units[EB/OL]. New York: arXiv, 2015. (2015?11?23) [2021?10?29].https://arxiv.org/abs/1511.07289.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems