[1]LUO Minxia,XU Donghui.Logical metric spaces for interval-valued fuzzy reasoning[J].CAAI Transactions on Intelligent Systems,2023,18(3):613-618.[doi:10.11992/tis.202110019]
Copy

Logical metric spaces for interval-valued fuzzy reasoning

References:
[1] YING Mingsheng. Perturbation of fuzzy reasoning[J]. IEEE transactions on fuzzy systems, 1999, 7(5): 625–629.
[2] CAI Kaiyuan. Robustness of fuzzy reasoning and δ-equalities of fuzzy sets[J]. IEEE transactions on fuzzy systems, 2001, 9(5): 738–750.
[3] 李永明. 模糊系统分析[M]. 北京: 科学出版社, 2005.
[4] LI Yongming, LI Dechao, PEDRYCZ W, et al. An approach to measure the robustness of fuzzy reasoning[J]. International journal of intelligent systems, 2005, 20(4): 393–413.
[5] DAI Songsong, PEI Daowu, GUO Donghui. Robustness analysis of full implication inference method[J]. International journal of approximate reasoning, 2013, 54(5): 653–666.
[6] 金检华, 李永明, 李春泉. 模糊推理系统的鲁棒性[J]. 模糊系统与数学, 2008, 22(5): 80–91
JIN Jianhua, LI Yongming, LI Chunquan. Robustness of fuzzy reasoning[J]. Fuzzy systems and mathematics, 2008, 22(5): 80–91
[7] 王国俊. 模糊推理的全蕴涵三I算法[J]. 中国科学(E辑), 1999(1): 43–53
WANG Guojun. Fuzzy reasoning full implication triple I method[J]. Science in China (series E), 1999(1): 43–53
[8] 王国俊, 段景瑶. 适宜于展开模糊推理的两类模糊度量空间[J]. 中国科学:信息科学, 2014, 44(5): 623–632
WANG Guojun, DUAN Jingyao. Two types of fuzzy metric spaces suitable for fuzzy reasoning[J]. Scientia sinica:information science, 2014, 44(5): 623–632
[9] ZADEH L A. Theory of approximate reasoning[J]. Machine intelligence, 1970: 149-194.
[10] LI Dechao, LI Yongming, XIE Yongjian. Robustness of interval-valued fuzzy inference[J]. Information sciences, 2011, 181(20): 4754–4764.
[11] LUO Minxia, ZHANG Kai. Robustness of full implication algorithms based on interval-valued fuzzy inference[J]. International journal of approximate reasoning, 2015, 62: 61–72.
[12] LUO Minxia, ZHOU Xiaoling. Robustness of reverse triple I algorithms based on interval-valued fuzzy inference[J]. International journal of approximate reasoning, 2015, 66: 16–26.
[13] LUO Minxia, ZHOU Xiaoling. Interval-valued quintuple implication principle of fuzzy reasoning[J]. International journal of approximate reasoning, 2017, 84: 23–32.
[14] 王蓉, 惠小静, 井美. 区间值模糊推理反向三Ⅰ约束算法的鲁棒性[J]. 模糊系统与数学, 2019, 33(1): 84–91
WANG Rong, HUI Xiaojing, JING Mei. The robustness of reverse triple Ⅰ restriction methods based on interval-valued fuzzy reasoning[J]. Fuzzy systems and mathematics, 2019, 33(1): 84–91
[15] LUO Minxia, WANG Yajing. Interval-valued fuzzy reasoning full implication algorithms based on the t-representable t-norm[J]. International journal of approximate reasoning, 2020, 122: 1–8.
[16] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 1990
[17] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer Academic Publishers, 2000
[18] HáJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer, 1998.
[19] JENEI S. A more efficient method for defining fuzzy connectives[J]. Fuzzy sets and systems, 1997, 90(1): 25–35.
[20] ALCALDE C, BURUSCO A, FUENTES-GONZáLEZ R. A constructive method for the definition of interval-valued fuzzy implication operators[J]. Fuzzy sets and systems, 2005, 153(2): 211–227.
[21] CHOUDHARY B. The elements of complex analysis[M]. New Delhi: New Age International Ltd, 1992.
[22] ZHANG Hongying, ZHANG Wenxiu, MEI Changlin. Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure[J]. Knowledge-based systems, 2009, 22(6): 449–454.
[23] MUNKRES J R. Topology[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2000
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems