[1]MA Chengyu,LIU Huaping,GE Quanbo.Scene-aware decentralized Monte Carlo Tree Search of target discovery[J].CAAI Transactions on Intelligent Systems,2022,17(6):1244-1253.[doi:10.11992/tis.202110012]
Copy

Scene-aware decentralized Monte Carlo Tree Search of target discovery

References:
[1] ANDERSON P, WU Qi, TENEY D, et al. Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018 : 3674-3683.
[2] DAS A, DATTA S, GKIOXARI G, et al. Embodied question answering[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018 : 1-10.
[3] ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3357-3364.
[4] CHAPLOT D S, GANDHI D, GUPTA A, et al. Object goal navigation using goal-oriented semantic exploration[EB/OL]. (2020-07-02)[2021-10-13]. https://arxiv.org/abs/2007.00643v2.
[5] LIANG Yiqing, CHEN Boyuan, SONG Shuran. SSCNav: confidence-aware semantic scene completion for visual semantic navigation[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 13194-13200.
[6] DRUON R, YOSHIYASU Y, KANEZAKI A, et al. Visual object search by learning spatial context[J]. IEEE robotics and automation letters, 2020, 5(2): 1279–1286.
[7] CAMPARI T, ECCHER P, SERAFINI L, et al. Exploiting scene-specific features for object goal navigation[C]//European Conference on Computer Vision. Cham: Springer, 2020: 406-421.
[8] YE Xin, YANG Yezhou. Efficient robotic object search via HIEM: hierarchical policy learning with intrinsic-extrinsic modeling[J]. IEEE robotics and automation letters, 2021, 6(3): 4425–4432.
[9] MOUSAVIAN A, TOSHEV A, FI?ER M, et al. Visual representations for semantic target driven navigation[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019 : 8846-8852.
[10] WU Qiaoyun, GONG Xiaoxi, XU Kai, et al. Towards target-driven visual navigation in indoor scenes via generative imitation learning[J]. IEEE robotics and automation letters, 2021, 6(1): 175–182.
[11] 王贺彬, 葛泉波, 刘华平, 等. 面向观测融合和吸引因子的多机器人主动SLAM[J]. 智能系统学报, 2021, 16(2): 371–377
WANG Hebin, GE Quanbo, LIU Huaping, et al. Multi-robot active SLAM for observation fusion and attractor[J]. CAAI transactions on intelligent systems, 2021, 16(2): 371–377
[12] LIN Qiuzhen, LIU Songbai, ZHU Qingling, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE transactions on evolutionary computation, 2018, 22(1): 32–46.
[13] 楼传炜, 葛泉波, 刘华平, 等. 无人机群目标搜索的主动感知方法[J]. 智能系统学报, 2021, 16(3): 575–583
LOU Chuanwei, GE Quanbo, LIU Huaping, et al. Active perception method for UAV group target search[J]. CAAI transactions on intelligent systems, 2021, 16(3): 575–583
[14] 吴莹莹, 丁肇红, 刘华平, 等. 面向环境探测的多智能体自组织目标搜索算法[J]. 智能系统学报, 2020, 15(2): 289–295
WU Yingying, DING Zhaohong, LIU Huaping, et al. Self-organizing target search algorithm of multi-agent system for envi-ronment detection[J]. CAAI transactions on intelligent systems, 2020, 15(2): 289–295
[15] LUO Tianze, SUBAGDJA B, WANG Di, et al. Multi-agent collaborative exploration through graph-based deep reinforcement learning[C]//2019 IEEE International Conference on Agents. Jinan: IEEE, 2019 : 2-7.
[16] HU Jinwen, XIE Lihua, XU Jun, et al. Multi-agent cooperative target search[J]. Sensors (Basel, Switzerland), 2014, 14(6): 9408–9428.
[17] JAIN U, WEIHS L, KOLVE E, et al. Two body problem: collaborative visual task completion[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019 : 6682-6692.
[18] JAIN U, WEIHS L, KOLVE E, et al. A cordial sync: going beyond marginal policies for multi-agent embodied tasks[M]//Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 471-490.
[19] YANG WEI, WANG XIAOLONG, FARHADI A, et al. Visual semantic navigation using scene priors[EB/OL]. (2018-10-15) [ 2021-10-13]. https://arxiv.org/abs/1810.06543.
[20] QIU Yiding, PAL A, CHRISTENSEN H. Learning hierarchical relationships for object-goal navigation[EB/OL]. (2020-11-18) [2021-10-13]. https://arxiv.org/abs/2003.06749v2.
[21] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359.
[22] 孙润稼, 刘玉田. 基于深度学习和蒙特卡洛树搜索的机组恢复在线决策[J]. 电力系统自动化, 2018, 42(14): 40–47
SUN Runjia, LIU Yutian. Online decision-making for generator start-up based on deep learning and Monte Carlo tree search[J]. Automation of electric power systems, 2018, 42(14): 40–47
[23] 邱云飞, 于智龙, 郭羽含, 等. 蒙特卡洛树搜索下的整合多目标可持续闭环供应链网络优化[J]. 计算机集成制造系统, 2022, 28(1): 269–293
QIU Yunfei, YU Zhilong, GUO Yuhan, et al. Integrated multi-objective sustainable closed-loop supply chain network optimization under MCTS[J]. Computer integrated manufacturing systems, 2022, 28(1): 269–293
[24] CHEN Weizhe, LIU Lantao. Pareto Monte Carlo tree search for multi-objective informative planning[EB/OL]. (2021-11-02) [2021-10-13]. https://arxiv.org/abs/2111.01825.
[25] BEST G, CLIFF O M, PATTEN T, et al. Dec-MCTS: Decentralized planning for multi-robot active perception[J]. The international journal of robotics research, 2019, 38(2/3): 316–337.
[26] SUKKAR F, BEST G, YOO C, et al. Multi-robot region-of-interest reconstruction with dec-MCTS[C]//2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019 : 9101-9107.
[27] KRISHNA R, ZHU Yuke, GROTH O, et al. Visual genome: connecting language and vision using crowdsourced dense image annotations[J]. International journal of computer vision, 2017, 123(1): 32–73.
[28] CHANG A, DAI A, FUNKHOUSER T, et al. Matterport3D: learning from RGB-D data in indoor environments[C]//2017 International Conference on 3D Vision. Qingdao: IEEE, 2017: 667-676.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems