[1]GONG Dahan,YU Longlong,CHEN Hui,et al.Object detection model optimization method for car-level chips[J].CAAI Transactions on Intelligent Systems,2021,16(5):900-907.[doi:10.11992/tis.202107057]
Copy

Object detection model optimization method for car-level chips

References:
[1] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems 2015. Montreal, Canada, 2015: 91-99.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 779?788.
[3] ZHOU Xingyi, WANG Dequan, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[4] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770?778.
[5] LAW H, DENG Jia. Cornernet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 734-750.
[6] ZHOU Xingyi, ZHUO Jiacheng, KR?HENBüHL P. Bottom-up object detection by grouping extreme and center points[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA, 2019: 850?859.
[7] LIU Zili, ZHENG Tu, XU Guodong, et al. Training-time-friendly network for real-time object detection[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence. New York, USA, 2020: 11685?11692.
[8] ZHOU Xingyi, KOLTUN V, KR?HENBüHL P. Probabilistic two-stage detection[J]. arXiv:2103.07461, 2021.
[9] IOFFE S, SZEGEDY C. Batch normalization: Accelerat-ing deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Confer-ence on Machine Learning. Lille, France, 2015: 448-456.
[10] 洪文亮. 基于改进的 Faster R-CNN 的目标检测系统的研究[D]. 长春: 吉林大学, 2019.
HONG Wenliang. Research on systems of object detection based improved Faster R-CNN[D]. Changchun: Jilin University, 2019.
[11] DENG Jia, DONG Wei, SOCHER R, et al. Imagenet: a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 248?255.
[12] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Proceedings of Annual Conference on Neural Information Processing Systems 2019. Vancouver, Canada, 2019: 8026?8037.
[13] ABADI M, BARHAM P, CHEN Jianmin, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah, USA, 2016: 265?283.
[14] KRIZHEVSKY ALEX, SUTSKEVER ILYA, HINTON GEOFFREY E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. Lake Tahoe, USA, 2012, 25: 1097?1105.
[15] KAREN SIMONYAN, ANDREW ZISSERMAN. Very deep convolutional networks for large-scale image re-cognition[EB/OL]. arXiv preprint, 2014. https://arxiv.org/abs/1409.1556.
[16] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1?9.
[17] HUANG Gao, LIU Zhang, LAURENS VAN DER MAATEN, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii, USA, 2017: 4700?4708.
[18] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980?2988.
[19] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Pro-ceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 2261-2269.
[20] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Inter-vention. Munich, Germany, 2015: 234-241.
[21] 林开颜, 吴军辉, 徐立鸿. 彩色图像分割方法综述[J]. 中国图象图形学报(A 辑), 2005, 10(1): 1?10.
LIN Kaiyan, WU Junhui, XU Lihong. Survey of color image segmentation[J]//Journal of image and araphics(A), 2005, 10(1): 1?10.
[22] ZHENG Liang, YANG Yi, HAUPTMANN A G. Person re-identification: past, present and future[J]. arXiv:1610.02984, 2016.
[23] LUO Hao, GU Youzhi, LIAO Xingyu, et al. Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of 2019 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition Workshops. Long Beach, USA, 2019: 1487-1495.
[24] 宋婉茹, 赵晴晴, 陈昌红, 等. 行人重识别研究综述[J]. 智能系统学报, 2017, 12(6): 770–780
SONG Wanru, ZHAO Qingqing, CHEN Changhong, et al. Survey of person reidentification[J]. CAAI transactions on intelligent systems, 2017, 12(6): 770–780
[25] 刘瑞芝, 孙士杰, 王菽裕, 等. 基于三维垂直逆投影面的枚举车速检测算法 [J]. 电子设计工程, 2016, 24(14):165–167.
LIU Ruizhi, SUN Shijie, WANG Shuyu, et al. Enumerated vehicle speed detection algorithm based on three-dimensional vertical back projection surface[J]. Electronic design engineering, 2016, 24(14): 165–167.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems