[1]YANG Mengyin,CHEN Junfen,ZHAI Junhai.A clustering method based on the asymmetric convolutional autoencoder[J].CAAI Transactions on Intelligent Systems,2022,17(5):900-907.[doi:10.11992/tis.202107021]
Copy

A clustering method based on the asymmetric convolutional autoencoder

References:
[1] LLOYD S. Least squares quantization in PCM[J]. IEEE transactions on information theory, 1982, 28(2): 129–137.
[2] HAEUSSER P, PLAPP J, GOLKOV V, et al. Associative deep clustering: training a classification network with no labels[C]//German Conference on Pattern Recognition. Cham: Springer, 2019: 18?32.
[3] REYNOLDS D. Gaussian mixture models[M]//Encyclopedia of Biometrics. Boston, MA: Springer US, 2009: 659?663.
[4] LIU Peng, ZHOU Dong, WU Naijun. VDBSCAN: varied density based spatial clustering of applications with noise[C]//2007 International Conference on Service Systems and Service Management. Chengdu, China. IEEE, 2007: 1?4.
[5] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley interdisciplinary reviews:computational statistics, 2010, 2(4): 433–459.
[6] ALQAHTANI A, XIE X, DENG J, et al. A deep convolutional auto-encoder with embedded clustering[C]//2018 25th IEEE International Conference on Image Processing. Athens, Greece. IEEE, 2018: 4058?4062.
[7] YU Tianqi, WANG Xianbin, SHAMI A. UAV-enabled spatial data sampling in large-scale IoT systems using denoising autoencoder neural network[J]. IEEE Internet of things journal, 2019, 6(2): 1856–1865.
[8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[9] MASCI J, MEIER U, CIRE?AN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[M]//Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 52?59.
[10] LEE Honglak, EKANADHAM C, NG A Y. Sparse deep belief net model for visual area V2[C]//Proc of Conf on Advances in Neural Information Processing Systems. Washington D. C. , USA: MIT Press, 2007: 873?880.
[11] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning-ICML ’08. Helsinki, Finland. New York: ACM Press, 2008: 1096?1103.
[12] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Proc of Advances in Neural Information Processing Systems. Washington, USA: MIT Press, 2006: 153?160.
[13] MA Xiaolei, DAI Zhuang, HE Zhengbing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818.
[14] XIE Junyuan, ROSS G, ALI F. Unsupervised deep embedding for clustering analysis[C]//Proc of ICML’16 Proc of the 33rd Int Conf on Int Conf on Machine Learning. New York City, NY: Semantic Scholar, 2016: 478?487.
[15] GUO Xifeng, GAO Long, LIU Xinwang, et al. Improved deep embedded clustering with local structure preservation[C]//IJCAI’17: Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York: ACM, 2017: 1753?1759.
[16] YANG Bo, FU Xiao, NICHOLAS D S, et al. Towards K-means-friendly spaces: simultaneous deep learning and clustering[C]//Proc of ICML’17 Proc of the 34th Int Conf on Machine Learning. Sydney, Australia: TonyJebara, 2016: 3861?3870.
[17] HUANG Peihao, HUANG Yan, WANG Wei, et al. Deep embedding network for clustering[C]//2014 22nd International Conference on Pattern Recognition. Stockholm, Sweden. IEEE, 2014: 1532?1537.
[18] LI Fengfu, QIAO Hong, ZHANG Bo. Discriminatively boosted image clustering with fully convolutional auto-encoders[J]. Pattern recognition, 2018, 83: 161–173.
[19] VAN L, MAATEN D, GEOFFREY H. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(2605): 2579–2605.
[20] 陈俊芬, 赵佳成, 韩洁, 等. 基于深度特征表示的Softmax聚类算法[J]. 南京大学学报(自然科学版), 2020, 56(4): 533–540
CHEN Junfen, ZHAO Jiacheng, HAN Jie, et al. Softmax clustering algorithm based on deep features representation[J]. Journal of Nanjing university (natural science edition), 2020, 56(4): 533–540
[21] HE Kaiming, SUN Jian. Convolutional neural networks at constrained time cost[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. IEEE, 2015: 5353?5360.
[22] SONG Chunfeng, LIU Feng, HUANG Yongzhen, et al. Auto-encoder based Data clustering[C]//Iberoamerican Congress on Pattern Recognition. Berlin, Heidelberg: Springer, 2013: 117?124.
[23] LIU Hongfu, SHAO Ming, LI Sheng, et al. Infinite ensemble for image clustering[C]//KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1745?1754.
[24] YANG Jianwei, PARIKH D, BATRA D. Joint unsupervised learning of deep representations and image clusters[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE, 2016: 5147?5156.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems