[1]ZOU Shourui,WU Yinan,FANG Yongchun.Tracking control of piezoelectric actuator based on feedforward compensation of recurrent neural network[J].CAAI Transactions on Intelligent Systems,2021,16(3):567-574.[doi:10.11992/tis.202104010]
Copy

Tracking control of piezoelectric actuator based on feedforward compensation of recurrent neural network

References:
[1] 张鑫, 孙小飞, 周文松, 等. 基于压电阻抗和主成分分析的斜拉索覆冰监测[J]. 哈尔滨工程大学学报, 2020, 41(12):1765-1771
ZHANG Xin, SUN Xiaofei, ZHOU Wensong, et al. Monitoring of stay-cable icing based on electro-mechanical impedance and principal component analysis[J]. Journal of Harbin Engineering University, 2020, 41(12):1765-1771
[2] 许延峰, 周天放, 蓝宇. 低频弯曲式水听器研究[J]. 应用科技, 2020, 47(1):99-104
XU Yanfeng, ZHOU Tianfang, LAN Yu. Research on the low frequency curved hydrophone[J]. Applied science and technology, 2020, 47(1):99-104
[3] WU Yinan, FAN Zhi, FANG Yongchun, et al. An effective correction method for AFM image distortion due to hysteresis and thermal drift[J]. IEEE transactions on instrumentation and measurement, 2021, 70:5004212.
[4] 黄心汉. 微装配机器人:关键技术、发展与应用[J]. 智能系统学报, 2020, 15(3):413-424
HUANG Xinhan. Microassembly robot:key technology, development, and applications[J]. CAAI transactions on intelligent systems, 2020, 15(3):413-424
[5] 莫喜平, 刘永平. 纵向换能器的频率方程[J]. 哈尔滨工程大学学报, 2019, 40(7):1245-1250
MO Xiping, LIU Yongping. Frequency equations for a longitudinal transducer[J]. Journal of Harbin Engineering University, 2019, 40(7):1245-1250
[6] GU Guoying, ZHU Limin, SU Chunyi, et al. Modeling of piezoelectric-actuated nanopositioning stages involving with the hysteresis[M]//RU Changhai, LIU Xinyu, SUN Yu. Nanopositioning Technologies:Fundamentals and Applications. Cham:Springer, 2016:183-212.
[7] ANG W T, GARMON F A, KHOSLA P K, et al. Modeling rate-dependent hysteresis in piezoelectric actuators[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, USA, 2003:1975-1980.
[8] STEPANENKO Y, SU Chunyi. Intelligent control of piezoelectric actuators[C]//Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, USA, 1998:4234-4239.
[9] XIAO Shunli, LI Yangmin. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse preisach model[J]. IEEE transactions on control systems technology, 2013, 21(5):1549-1557.
[10] CHEN Hui, TAN Yonghong, ZHOU Xingpeng, et al. Identification of dynamic hysteresis based on duhem model[C]//2011 Fourth International Conference on Intelligent Computation Technology and Automation. Shenzhen, China, 2011:810-814.
[11] LIU Yanfang, SHAN Jinjun, GABBERT U, et al. Hysteresis and creep modeling and compensation for a piezoelectric actuator using a fractional-order Maxwell resistive capacitor approach[J]. Smart materials and structures, 2013, 22(11):115020.
[12] CHENG Long, LIU Weichuan, HOU Zengguang, et al. An adaptive Takagi-Sugeno fuzzy model-based predictive controller for piezoelectric actuators[J]. IEEE transactions on industrial electronics, 2017, 64(4):3048-3058.
[13] LING Jie, FENG Zhao, ZHENG Dongdong, et al. Robust adaptive motion tracking of piezoelectric actuated stages using online neural-network-based sliding mode control[J]. Mechanical systems and signal processing, 2021, 150:107235.
[14] ZHAO Xinlong, SHEN Shuai, SU Liangcai, et al. Elman neural network-based identification of rate-dependent hysteresis in piezoelectric actuators[J]. Journal of intelligent material systems and structures, 2020, 31(7):980-989.
[15] SERVAN-SCHREIBER D, CLEEREMANS A, MCCLELLAND J L. Learning sequential structure in simple recurrent networks[M]//TOURETZKY D S. Advances in Neural Information Processing Systems 1. San Francisco:Morgan Kaufmann Publishers Inc., 1989:643-652.
[16] XIE Shengwen, REN Juan. Predictive control of nano-positioning stage using recurrent-neural-network-based inversion model[C]//2019 IEEE 58th Conference on Decision and Control (CDC). Nice, France, 2019:7764-7769.
[17] WU Yinan, FANG Yongchun, LIU Cunhuan, et al. Gated recurrent unit based frequency-dependent hysteresis modeling and end-to-end compensation[J]. Mechanical systems and signal processing, 2020, 136:106501.
[18] CHOUZA A, BARAMBONES O, CALVO I, et al. Sliding mode-based robust control for piezoelectric actuators with inverse dynamics estimation[J]. Energies, 2019, 12(5):943.
[19] SOLEYMANZADEH D, GHAFARIRAD H, ZAREINEJAD M. Sensorless adaptive sliding mode position control for piezoelectric actuators with charge leakage[J]. Journal of intelligent material systems and structures, 2020, 31(1):40-52.
[20] CHENG Long, LIU Weichuan, HOU Zengguang, et al. Neural-network-based nonlinear model predictive control for piezoelectric actuators[J]. IEEE transactions on industrial electronics, 2015, 62(12):7717-7727.
[21] LIN F J, SHIEH H J, HUANG P K, et al. Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2006, 53(9):1649-1661.
[22] SCH?FER A M, ZIMMERMANN H G. Recurrent neural networks are universal approximators[C]//Proceedings of the 16th International Conference on Artificial Neural Networks. Athens, Greece, 2006:632-640.
[23] MORé J J. The Levenberg-Marquardt algorithm:implementation and theory[M]//WATSON G A. Numerical Analysis. Berlin, Heidelberg:Springer, 1997:105-116.
[24] XU Baochang, WU Jianzhang, CHEN Yongkun. An improved single neuron adaptive PID control algorithm[C]//2009 Fifth International Conference on Natural Computation. Tianjin, China, 2009:558-562.
[25] MAR?íK J, STREJC V. Application of identification-free algorithms for adaptive control[J]. Automatica, 1989, 25(2):273-277.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems