[1]SUN Yubo,LI Haitao,SHU Zhilin,et al.A quantitative gait assessment method based on lateral gastrocnemius sEMG for neuromodulation of Parkinson’s disease[J].CAAI Transactions on Intelligent Systems,2022,17(1):98-106.[doi:10.11992/tis.202103045]
Copy

A quantitative gait assessment method based on lateral gastrocnemius sEMG for neuromodulation of Parkinson’s disease

References:
[1] LANG A E, LOZANO A M. Parkinson’s disease[J]. The new England journal of medicine, 1998, 339(16): 1130–1143.
[2] JANKOVIC J. PANKOVIC J. Parkinson’s disease: clinical features and diagnosis[J]. Journal of neurology, neurosurgery & psychiatry, 2008, 79(4): 368–376.
[3] SVEINBJORNSDOTTIR S. The clinical symptoms of Parkinson’s disease[J]. Journal of neurochemistry, 2016, 139(S1): 318–324.
[4] 许梦圆, 陈涛, 孟徐, 等. 帕金森病运动症状量化评估的研究进展[J]. 中华神经科杂志, 2020, 53(10): 845–854.XU Mengyuan, CHEN Tao, MENG Xu, et al. Progress on quantitative assessments of motor symptoms for Parkinson′s disease[J]. Chinese journal of neurology, 2020, 53(10): 845–854.
[5] TOLOSA E, WENNING G, POEWE W. The diagnosis of Parkinson’s disease[J]. The lancet neurology, 2006, 5(1): 75–86.
[6] BOUTHOUR W, MéGEVAND P, DONOGHUE J, et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond[J]. Nature reviews neurology, 2019, 15(6): 343–352.
[7] LOZANO A M, LIPSMAN N, BERGMAN H, et al. Deep brain stimulation: current challenges and future directions[J]. Nature reviews neurology, 2019, 15(3): 148–160.
[8] 牛朝诗, 熊赤. 脑深部电刺激术治疗运动障碍性疾病现状与展望[J]. 中国现代神经疾病杂志, 2020, 20(12): 1027–1031.NIU Chaoshi, XIONG Chi. The achievement and prospect of deep brain stimulation for the treatment of movement disorders[J]. Chinese journal of contemporary neurology and neurosurgery, 2020, 20(12): 1027–1031.
[9] CHEN Shengdi, GAO Guodong, FENG Tao, et al. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson’s disease[J]. Translational neurodegeneration, 2018, 7(1): 1–8.
[10] KOEGLSPERGER T, PALLEIS C, HELL F, et al. Deep brain stimulation programming for movement disorders: current concepts and evidence-based strategies[J]. Frontiers in neurology, 2019, 10: 410–419.
[11] 李青青, 吴宗耀. 步行中胫前后肌群的表面肌电图[J]. 神经损伤与功能重建, 2007(2): 116–119.LI Qingqing, WU Zongyao. Surface electromyography of the anterior and posterior tibial muscles during walking[J]. Neural injury and functional reconstruction, 2007(02): 116–119.
[12] MIRELMAN A, BONATO P, CAMICIOLI R, et al. Gait impairments in Parkinson’s disease[J]. The lancet neurology, 2019, 18(7): 697–708.
[13] BAILEY C A, CORONA F, MURGIA M, et al. Electromyographical gait characteristics in Parkinson’s disease: effects of combined physical therapy and rhythmic auditory stimulation[J]. Frontiers in neurology, 2018, 9: 211.
[14] KELOTH S M, RADCLIFFE P J, RAGHAV S, et al. Differentiating between Parkinson’s disease patients and controls using variability in muscle activation during walking[C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society . Montreal, Canada, 2020: 3158–3161.
[15] CANTú H A, NANTEL J, MILLáN M, et al. Abnormal muscle activity and variability before, during, and after the occurrence of freezing in Parkinson’s disease[J]. Frontiers in neurology, 2019, 10: 951.
[16] ALDAYIL E, KERR A. Plantarflexor muscle activity during a change in walking speed on a treadmill: comparison between Parkinson’s and unimpaired controls[J]. Physiotherapy, 2021, 113: e96–e97.
[17] BUCHANAN T S, LLOYD D G, MANAL K, et al. Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command[J]. Journal of applied biomechanics, 2004, 20(4): 367–395.
[18] MOON Y, SUNG J, AN Ruopeng, et al. Gait variability in people with neurological disorders: a systematic review and meta-analysis[J]. Human movement science, 2016, 47: 197–208.
[19] CASAMASSIMA F, FERRARI A, MILOSEVIC B, et al. A wearable system for gait training in subjects with Parkinson’s disease[J]. Sensors, 2014, 14(4): 6229–6246.
[20] HAUSDORFF J M, CUDKOWICZ M E, FIRTION R, et al. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease[J]. Movement disorders, 1998, 13(3): 428–437.
[21] 刘姁霖, 王丹, 杨伟伟. 步态训练在帕金森病康复治疗中的研究进展[J]. 中国康复医学杂志, 2019, 34(3): 354–359.LIU Xulin, WANG Dan, YANG Weiwei. Research progress of gait training in the rehabilitation of parkinson’s disease[J]. Chinese journal of rehabilitation medicine, 2019, 34(3): 354–359.
[22] KONRAD P. The ABC of EMG: a practical introduction to kinesiological electromyography[M]. Scottsdale: Noraxon USA. Inc., 2005: 30–35.
[23] RISSANEN S, KANKAANP?? M, TARVAINEN M P, et al. Analysis of surface EMG signal morphology in Parkinson’s disease[J]. Physiological measurement, 2007, 28(12): 1507–1521.
[24] AL OMARI F, HUI Jiang, MEI Congli, et al. Pattern recognition of eight hand motions using feature extraction of forearm EMG signal[J]. Proceedings of the national academy of sciences, India section A: physical sciences, 2014, 84(3): 473–480.
[25] PHINYOMARK A, LIMSAKUL C, PHUKPATTARANONT P. Application of wavelet analysis in EMG feature extraction for pattern classification[J]. Measurement science review, 2011, 11(2): 45–52.
[26] BALASUBRAMANIAN V, ADALARASU K. EMG-based analysis of change in muscle activity during simulated driving[J]. Journal of bodywork and movement therapies, 2007, 11(2): 151–158.
[27] YOCHUM M, BINCZAK S. A wavelet based method for electrical stimulation artifacts removal in electromyogram[J]. Biomedical signal processing and control, 2015, 22: 1–10.
[28] ZHANG Jian, SOANGRA R, E LOCKHART T. A comparison of denoising methods in onset determination in medial gastrocnemius muscle activations during ttance[J]. Sci, 2020, 2(3): 53–66.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems