[1]YANG Yudi,ZHOU Lihua,DU Guowang,et al.Influence maximization based on network embedding in heterogeneous information networks[J].CAAI Transactions on Intelligent Systems,2021,16(4):757-765.[doi:10.11992/tis.202009047]
Copy

Influence maximization based on network embedding in heterogeneous information networks

References:
[1] HEIDARI M, ASADPOUR M, FAILI H. SMG: fast scalable greedy algorithm for influence maximization in social networks[J]. Physica a: statistical mechanics and its applications, 2015, 420: 124-133.
[2] ORIEDI D, DE RUNZ C, GUESSOUM Z, et al. Influence maximization through user interaction modeling[C]//Proceedings of the 35th Annual ACM Symposium on Applied Computing. Brno, Czech Republic, 2020: 1888-1890.
[3] LIU Wei, CHEN Ling, CHEN Xin, et al. An algorithm for influence maximization in competitive social networks with unwanted users[J]. Applied intelligence, 2020, 50(2): 417-437.
[4] KIANIAN S, ROSTAMNIA M. An efficient path-based approach for influence maximization in social networks[J]. Expert systems with applications, 2021, 167: 114-168.
[5] SHANG Jiaxing, ZHOU Shangbo, LI Xin, et al. CoFIM: a community-based framework for influence maximization on large-scale networks[J]. Knowledge-based systems, 2017, 117: 88-100.
[6] 胡庆成, 张勇, 邢春晓. 基于有重叠社区划分的社会网络影响最大化方法研究[J]. 计算机科学, 2018, 45(6): 32-35
HU Qingcheng, ZHANG Yong, XING Chunxiao, et al. K-clique heuristic algorithm for influence maximization in social network[J]. Computer science, 2018, 45(6): 32-35
[7] KEMPE D, KLEINBERG J, TARDOS é. Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003: 137-146.
[8] LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007: 420-429.
[9] GOYAL A, LU Wei, LAKSHMANAN L V S. CELF++: optimizing the greedy algorithm for influence maximization in social networks[C]//Proceedings of the 20th International Conference Companion on World Wide Web. Hyderabad, India, 2011: 47-48.
[10] TANG Jang, TANG Xueyan, YUAN Junsong. An efficient and effective hop-based approach for influence maximization in social networks[J]. Social network analysis and mining, 2018, 8(1): 10.
[11] PENG Sancheng, YANG Aimin, CAO Lihong, et al. Social influence modeling using information theory in mobile social networks[J]. Information sciences, 2017, 379: 146-159.
[12] SHI Chuan, KONG Xiangnan, HUANG Yue, et al. HeteSim: a general framework for relevance measure in heterogeneous networks[J]. IEEE transactions on knowledge and data engineering, 2014, 26(10): 2479-2492.
[13] WANG Chenguang, SUN Yizhou, SONG Yanglei, et al. RelSim: relation similarity search in schema-rich heterogeneous information networks[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia, USA, 2016: 621-629.
[14] CHEN Lu, GAO Yunjun, ZHANG Yuanliang, et al. Efficient and incremental clustering algorithms on star-schema heterogeneous graphs[C]//Proceedings of 35th International Conference on Data Engineering. Macao, China, 2019: 256-267.
[15] CHEN Junxiang, DAI Wei, SUN Yizhou, et al. Clustering and ranking in heterogeneous information networks via gamma-Poisson model[C]//Proceedings of the 2015 SIAM International Conference on Data Mining. Vancouver, Canada, 2015: 425-432.
[16] BANGCHAROENSAP P, MURATA T, KOBAYASHI H, et al. Transductive classification on heterogeneous information networks with edge betweenness-based normalization[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. San Francisco, USA, 2016: 437-446.
[17] WAN Mengting, OUYANG Yunbo, KAPLAN L, et al. Graph regularized meta-path based transductive regression in heterogeneous information network[C]//Proceedings of the 2015 SIAM International Conference on Data Mining. Vancouver, Canada, 2015: 918-926.
[18] YANG Yudi, ZHOU Lihua, JIN Zhao, et al. Meta path-based information entropy for modeling social influence in heterogeneous information networks[C]//Proceedings of the 20th IEEE International Conference on Mobile Data Management. Hong Kong, China, 2019: 557-562.
[19] LIU Zemin, ZHENG V W, ZHAO Zhou, et al. Distance-aware DAG embedding for proximity search on heterogeneous graphs[C]//Proceedings of 32nd AAAI Conference on Artificial Intelligence (AAAI). New Orleans, USA, 2018: 2355-2362.
[20] SHI Chuan, HU Binbin, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE transactions on knowledge and data engineering, 2019, 31(2): 357-370.
[21] SHI Yu, ZHU Qi, GUO Fang, et al. Easing embedding learning by comprehensive transcription of heterogeneous information networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK, 2018: 2190-2199.
[22] LUO Chen, GUAN Renchu, WANG Zhe, et al. HetPathMine: a novel transductive classification algorithm on heterogeneous information networks[C]//Proceedings of the 36th European Conference on Information Retrieval. Amsterdam, The Netherlands, 2014: 210-221.
[23] FU Taoyang, LEE W C, LEI Zhen. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore, 2017: 1797-1806.
[24] SUN Yizhou, HAN Jiawei, JING Gao, et al. iTopicModel: information network-integrated topic modeling[C]//Proceedings of the 9th IEEE International Conference on Data Mining. Miami, USA, 2009: 493-502.
[25] 马知恩, 周义仓, 王稳地, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2014.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems