[1]GUO Lei,WANG Jun,DING Weichang,et al.Classification of the functional magnetic resonance image of autism based on 4D convolutional neural network[J].CAAI Transactions on Intelligent Systems,2021,16(6):1021-1029.[doi:10.11992/tis.202009022]
Copy

Classification of the functional magnetic resonance image of autism based on 4D convolutional neural network

References:
[1] 张芬, 王穗苹, 杨娟华, 等. 自闭症谱系障碍者异常的大脑功能连接[J]. 心理科学进展, 2015, 23(7): 1196-1204
ZHANG Fen, WANG Suiping, YANG Juanhua, et al. Atypical brain functional connectivity in autism spectrum disorders[J]. Advances in psychological science, 2015, 23(7): 1196-1204
[2] CABALLERO-GAUDES C, REYNOLDS R C. Methods for cleaning the BOLD fMRI signal[J]. Neuroimage, 2017, 154: 128-149.
[3] MOELLER S, YACOUB E, OLMAN C A, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain FMRI[J]. Magnetic resonance in medicine, 2010, 63(5): 1144-1153.
[4] 常春云. 基于静息态功能磁共振成像的自闭症预测研究[D]. 北京: 北京交通大学, 2017.
CHANG Chunyun. Research on prediction of autism spectrum disorder based on resting-state fMRI[D]. Beijing: Beijing Jiaotong University, 2017.
[5] DVORNEK N C, VENTOLA P, PELPHREY K A, et al. Identifying autism from resting-state fMRI using long short-term memory networks[M]//WANG Qian, SHI Yinghuan, SUK H I, et al. Machine Learning in Medical Imaging. Cham: Springer, 2017: 362-370.
[6] ZHAO Yu, DONG Qinglin, ZHANG Shu, et al. Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks[J]. IEEE transactions on biomedical engineering, 2018, 65(9): 1975-1984.
[7] LI Xiaoxiao, DVORNEK N C, PAPADEMETRIS X, et al. 2-Channel convolutional 3D deep neural network (2CC3D) for fMRI analysis: ASD classification and feature learning[C]//2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, USA, 2018: 1252-1255.
[8] KHOSLA M, JAMISON K, KUCEYESKI A, et al. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction[J]. NeuroImage, 2019, 199: 651-662.
[9] LU Zhou, PU Hongming, WANG Feicheng, et al. The expressive power of neural networks: a view from the width[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA, 2017: 6232-6240.
[10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012: 1097-1105.
[11] JI Shuiwang, XU Wei, YANG Ming, et al. 3D Convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 221-231.
[12] DIBA A, FAYYAZ M, SHARMA V, et al. Temporal 3D convnets: new architecture and transfer learning for video classification [EB/OL].(2017-11-22)[2020-9-20]https:// arxiv. org/ abs/1711.08200.
[13] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[14] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer science, 2012, 3(4): 212-223.
[15] SIMONYAN K, ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[EB/OL]// (2018-8-16)[2019-4-26]https://arxiv.org/abs/1808.05377v1.
[16] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA, 2014: 1-9.
[17] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France, 2015: 448-456.
[18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 2818-2826.
[19] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, USA, 2017: 4278-4284.
[20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA, 2016: 770-778.
[21] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, USA, 2017: 2261-2269.
[22] EL GAZZAR A, CERLIANI L, VAN WINGEN G, et al. Simple 1-D convolutional networks for resting-state fMRI based classification in autism[C]//2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary, 2019: 1-6.
[23] YAN Chaogan, WANG Xindi, ZUO Xinian, et al. DPABI: data processing & analysis for (resting-state) brain imaging[J]. Neuroinformatics, 2016, 14(3): 339-351.
[24] HECHT-NIELSEN. Theory of the backpropagation neural network[C]//International 1989 Joint Conference on Neural Networks. Washington, USA, 1989: 593-605.
[25] ELSKEN T, METZEN J H, HUTTER F . Neural architecture search: A survey[EB/OL]. (2018-8-16)[2020-9-20]https://arxiv.org/abs/1808.05377v1.
[26] SALVADOR R, SUCKLING J, COLEMAN M R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cerebral cortex, 2005, 15(9): 1332-1342.
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems