[1]ZHU Hailong,GENG Wenqiang,HAN Jinsong,et al.Constructing a WSN node fault detection model using the belief rule base[J].CAAI Transactions on Intelligent Systems,2021,16(3):511-517.[doi:10.11992/tis.202009006]
Copy

Constructing a WSN node fault detection model using the belief rule base

References:
[1] 魏访, 郑朝霞. 基于无线传感器网络的工业环境温湿度监测系统[J]. 仪表技术与传感器, 2018(5):55-57, 82
WEI Fang, ZHENG Zhaoxia. Industrial environment temperature and humidity monitoring system based on wireless sensor network[J]. Instrument technique and sensor, 2018(5):55-57, 82
[2] 宋航, 李建成, 张春华, 等. 军事物联网的关键技术[J]. 国防科技, 2015, 36(6):24-34
SONG Hang, LI Jiangcheng, ZHANG Chunhua, et al. Overview of military IoT key technologies[J]. National defense science & technology, 2015, 36(6):24-34
[3] 苗春雷. 无线传感器网络在环境监测中的应用[J]. 环境与发展, 2017, 29(10):144, 148
MIAO Chunlei. Application of wireless sensor network in environmental monitoring[J]. Environment and development, 2017, 29(10):144, 148
[4] 杨莺, 杨武德, 吴华瑞, 等. 基于移动sink的农田无线传感器网络数据收集策略[J]. 计算机科学, 2019, 46(4):106-111
YANG Ying, YANG Wude, WU Ruihua, et al. Mobile sink based data collection strategy for farmland WSN[J]. Computer science, 2019, 46(4):106-111
[5] 向模军, 邹承俊. 无线传感器网络在农业应用中的特点和前景[J]. 中国沼气, 2018, 36(4):54-60
XIANG Mojun, ZOU Chengjun. Characteristics and prospects of wireless sensor networks in agricultural applications[J]. China biogas, 2018, 36(4):54-60
[6] 周奚, 薛善良. 基于改进的粗糙集和神经网络的WSN故障诊断[J]. 计算机科学, 2016, 43(S2):21-25
ZHOU Xi, XUE Shanliang. WSN fault diagnosis with improved rough set and neural network[J]. Computer science, 2016, 43(S2):21-25
[7] 薛善良, 杨佩茹, 周奚. 基于模糊神经网络的WSN无线数据收发单元故障诊断[J]. 计算机科学, 2018, 45(5):38-43
XUE Shanliang, YANG Peiru, ZHOU Xi. WSN wireless data transceiver unit fault diagnosis with fuzzy neural network[J]. Computer science, 2018, 45(5):38-43
[8] 黄旭. MRNN:一种新的基于改进型递归神经网络的WSN动态建模方法:应用于故障检测[J]. 计算机工程与科学, 2015, 37(4):711-718
HUANG Xu. MRNN:A novel wireless sensor network dynamic modeling method for fault detection using modified recurrent neural network[J]. Computer engineering & science, 2015, 37(4):711-718
[9] 常琳, 黄志清, 张严心. 基于数据驱动的WSN节点故障诊断算法[J]. 计算机工程, 2017, 43(9):105-109
CHANG Lin, HUANG Zhiqing, ZHANG Yanxin. Node fault diagnosis algorithm in WSN based on data driven[J]. Computer engineering, 2017, 43(9):105-109
[10] LU Siliang, ZHOU Peng, WANG Xiaoxian, et al. Condition monitoring and fault diagnosis of motor bearings using under sampled vibration signals from a wireless sensor network[J]. Journal of sound and vibration, 2018, 414:81-96.
[11] SUN Qiaoyan, SUN Yumei, LIU Xuejiao, et al. Study on fault diagnosis algorithm in WSN nodes based on RPCA model and SVDD for multi-class classification[J]. Cluster computing, 2019, 22(3):6043-6057.
[12] JIN Xiaohang, CHOW T W S, SUN Yi, et al. Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis[J]. Wireless networks, 2015, 21(3):829-839.
[13] DARWISH S M, EL-DIRINI M N, ABD EL-MOGHITH I A. An adaptive cellular automata scheme for diagnosis of fault tolerance and connectivity preserving in wireless sensor networks[J]. Alexandria engineering journal, 2018, 57(4):4267-4275.
[14] 兰涯雯, 李强, 邓淑桃, 等. 基于多属性关联决策的WSN故障检测方法[J]. 计算机工程, 2019, 45(10):84-89
LAN Yawen, LI Qiang, DENG Shutao, et al. WSN fault detection method based on correlative multi-attribute decision-making[J]. Computer engineering, 2019, 45(10):84-89
[15] 周光海, 宁兆龙, 陈志奎, 等. 基于核偏最小二乘法的物联网无线传感网络故障分析与研究[J]. 通信学报, 2017, 38(S2):94-98
ZHOU Guanghai, NING Zhaolong, CHEN Zhikui, et al. Fault analysis and research of wireless sensor network based on kernel partial least squares[J]. Journal on communications, 2017, 38(S2):94-98
[16] 蔺艳斐, 邵苏杰, 钟成, 等. 基于可信度和邻居协作的传感器故障检测算法[J]. 通信学报, 2016, 37(9):183-190
LIN Yanfei, SHAO Sujie, ZHONG Cheng, et al. Sensor fault detection algorithm based on credibility and neighbor-cooperation[J]. Journal on communications, 2016, 37(9):183-190
[17] 徐晓斌, 张光卫, 王尚广, 等. 基于群体信任的WSN异常数据过滤方法[J]. 通信学报, 2014, 35(5):108-117, 123
XU Xiaobin, ZHANG Guangwei, WANG Shangguang, et al. Abnormal data filtering approach based on collective trust for WSN[J]. Journal on communications, 2014, 35(5):108-117, 123
[18] YANG Jianbo. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European journal of operational research, 2001, 13(1):31-61.
[19] YANG Jianbo, LIU Jun, WANG Jin, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE transactions on systems, man, and cybernetics-part A:systems and humans, 2006, 36(2):266-285.
[20] 符修文, 杨勇生, 姚海庆. 基于趋势相关性的传感器网络故障检测算法[J]. 华中科技大学学报(自然科学版), 2018, 46(10):98-104
FU Xiuwen, YANG Yongsheng, YAO Haiqing. Fault detection algorithm for sensor network based on tendency-similarity[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2018, 46(10):98-104
[21] YANG Jianbo, XU Dongling. Evidential reasoning rule for evidence combination[J]. Artificial intelligence, 2013, 205:1-29.
[22] XU Dongling, LIU Jun, YANG Jianbo, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J]. Expert systems with applications, 2007, 32(1):103-113.
[23] HU Guanyu, ZHOU Zhijie, ZHANG Bangcheng, et al. A method for predicting the network security situation based on hidden BRB model and revised CMA-ES algorithm[J]. Applied soft computing, 2016, 48:404-418.
[24] ZHAO Fuqing, DU Songlin, ZHANG Yi, et al. Hybrid biogeography-based optimization with enhanced mutation and CMA-ES for global optimization problem[J]. Service oriented computing and applications, 2020, 14(1):65-73.
[25] HANSEN N, MüLLER S D, KOUMOUTSAKOS P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionary computation, 2003, 11(1):1-18.
Similar References:

Memo

-

Last Update: 2021-06-25

Copyright © CAAI Transactions on Intelligent Systems