[1]CUI Tiejun,LI Shasha.System fault entropy model and its time-varying based on linear entropy[J].CAAI Transactions on Intelligent Systems,2021,16(6):1136-1142.[doi:10.11992/tis.202006034]
Copy

System fault entropy model and its time-varying based on linear entropy

References:
[1] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32-37, 62
CUI Tiejun, MA Yundong. Research on multi-dimensional space fault tree construction and application[J]. China safety science journal, 2013, 23(4): 32-37, 62
[2] 刘炜, 李思文, 王竞, 等. 基于EWT能量熵的直流短路故障辨识[J]. 电力自动化设备, 2020, 40(2): 149-153
LIU Wei, LI Siwen, WANG Jing, et al. Identification of DC short circuit fault based on EWT energy entropy[J]. Electric power automation equipment, 2020, 40(2): 149-153
[3] 杨洪涛. 样本熵改进小波包阈值去噪的轴承故障诊断[J]. 组合机床与自动化加工技术, 2020(1): 79-82, 88
YANG Hongtao. Bearing fault diagnosis based on wavelet packet threshold de-noise algorithm improved by sample entropy[J]. Modular machine tool & automatic manufacturing technique, 2020(1): 79-82, 88
[4] 刘渝根, 陈超, 杨蕊菁, 等. 基于小波相对熵的变电站直流系统接地故障定位方法[J]. 高压电器, 2020, 56(1): 169-174
LIU Yugen, CHEN Chao, YANG Ruijing, et al. Location method of ground fault in DC system of substation based on wavelet relative entropy[J]. High voltage apparatus, 2020, 56(1): 169-174
[5] 李永健, 宋浩, 刘吉华, 等. 基于改进多尺度排列熵的列车轴箱轴承诊断方法研究[J]. 铁道学报, 2020, 42(1): 33-39
LI Yongjian, SONG Hao, LIU Jihua, et al. A study on fault diagnosis method for train axle box bearing based on modified multiscale permutation entropy[J]. Journal of the China railway society, 2020, 42(1): 33-39
[6] 张龙, 吴荣真, 雷兵, 等. 基于多尺度熵的滚动轴承故障可拓智能识别[J]. 噪声与振动控制, 2019, 39(6): 200-205
ZHANG Long, WU Rongzhen, LEI Bing, et al. Extensible intelligent identification for rolling bearing faults using multiscale entropy[J]. Noise and vibration control, 2019, 39(6): 200-205
[7] 张雅丽, 刘永姜, 张航, 等. 基于ITD信息熵与PNN的轴承故障诊断[J]. 煤矿机械, 2019, 40(12): 167-169
ZHANG Yali, LIU Yongjiang, ZHANG Hang, et al. Bearing fault diagnosis based on ITD information entropy and PNN[J]. Coal mine machinery, 2019, 40(12): 167-169
[8] 赵书涛, 李云鹏, 王二旭, 等. 基于电—振信号熵权特征的断路器储能机构故障诊断方法[J]. 高压电器, 2019, 55(11): 204-210
ZHAO Shutao, LI Yunpeng, WANG Erxu, et al. Fault diagnosis method of circuit breaker energy storage mechanism based on electro-vibration signal entropy weight feature[J]. High voltage apparatus, 2019, 55(11): 204-210
[9] 张国辉, 冯俊栋, 徐丙立, 等. 基于故障特征信息量的诊断策略优化仿真研究[J]. 计算机仿真, 2019, 36(11): 317-321
ZHANG Guohui, FENG Jundong, XU Bingli, et al. Research on DMFT test method based on hybrid diagnostic model[J]. Computer simulation, 2019, 36(11): 317-321
[10] 戴邵武, 陈强强, 戴洪德, 等. 基于平滑先验分析和模糊熵的滚动轴承故障诊断[J]. 航空动力学报, 2019, 34(10): 2218-2226
DAI Shaowu, CHEN Qiangqiang, DAI Hongde, et al. Rolling bearing fault diagnosis based on smoothness priors approach and fuzzy entropy[J]. Journal of aerospace power, 2019, 34(10): 2218-2226
[11] 王志, 李有儒, 田晶, 等. 基于EMD模糊熵与会诊决策融合模型的中介轴承故障诊断技术[J]. 航空发动机, 2019, 45(5): 76-81
WANG Zhi, LI Youru, TIAN Jing, et al. Fault diagnosis technology of inter-shaft bearing based on EMD fuzzy entropy and consultative decision fusion model[J]. Aeroengine, 2019, 45(5): 76-81
[12] 赵小强, 张和慧. 基于交叉熵的改进NPE间歇过程故障检测算法[J]. 控制与决策, 2021, 36(2): 411-417
ZHAO Xiaoqiang, ZHANG Hehui. Improved NPE batch process fault detection algorithm based on cross entropy[J]. Control and decision, 2021, 36(2): 411-417
[13] KUMAR A, GANDHI C P, ZHOU Yuqing, et al. Fault diagnosis of rolling element bearing based on symmetric cross entropy of neutrosophic sets[J]. Measurement, 2020, 152: 107318.
[14] MINHAS A S, SINGH G, SINGH J, et al. A novel method to classify bearing faults by integrating standard deviation to refined composite multi-scale fuzzy entropy[J]. Measurement, 2020, 154: 107441.
[15] TRUONG M T N, KIM S. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection[J]. Soft computing, 2018, 22(13): 4197-4203.
[16] MINHAS A S, SINGH S, MALHOTRA J, et al. Machine deterioration identification for multiple nature of faults based on autoregressive-approximate entropy approach[J]. Life cycle reliability and safety engineering, 2018, 7(3): 185-192.
[17] 刘天寿, 匡海波, 刘家国, 等. 区间数熵权TOPSIS的港口安全管理成熟度评价[J]. 哈尔滨工程大学学报, 2019, 40(5): 1024-1030
LIU Tianshou, KUANG Haibo, LIU Jiaguo, et al. Evaluation on maturity of port safety management based on interval entropy weight TOPSIS[J]. Journal of Harbin Engineering University, 2019, 40(5): 1024-1030
[18] 杜鑫, 邱庆刚, 丁雅倩, 等. 超临界水冷堆子通道中熵产行为数值研究[J]. 哈尔滨工程大学学报, 2018, 39(8): 1290-1295
DU Xin, QIU Qinggang, DING Yaqian, et al. Numerical research on entropy generation in a sub-channel of SCWR[J]. Journal of Harbin Engineering University, 2018, 39(8): 1290-1295
[19] 赵宏伟, 王也然, 刘萍萍, 等. 利用位置信息熵改进VLAD的图像检索方法[J]. 哈尔滨工程大学学报, 2018, 39(8): 1376-1381
ZHAO Hongwei, WANG Yeran, LIU Pingping, et al. Improved VLAD using location information entropy in image retrieval[J]. Journal of Harbin Engineering University, 2018, 39(8): 1376-1381
[20] 崔铁军, 马云东. 基于多维空间事故树的维持系统可靠性方法研究[J]. 系统科学与数学, 2014, 34(6): 682-692
CUI Tiejun, MA Yundong. Research on the maintenance method of system reliability based on multi-dimensional space fault tree[J]. Journal of systems science and mathematical sciences, 2014, 34(6): 682-692
[21] 崔铁军, 马云东. 基于SFT理论的系统可靠性评估方法改造研究[J]. 模糊系统与数学, 2015, 29(5): 173-182
CUI Tiejun, MA Yundong. Reliability assessment method based on space fault tree[J]. Fuzzy systems and mathematics, 2015, 29(5): 173-182
[22] 崔铁军, 马云东. DSFT的建立及故障概率空间分布的确定[J]. 系统工程理论与实践, 2016, 36(4): 1081-1088
CUI Tiejun, MA Yundong. Discrete space fault tree construction and failure probability space distribution determination[J]. Systems engineering-theory & practice, 2016, 36(4): 1081-1088
[23] 崔铁军, 马云东. DSFT中因素投影拟合法的不精确原因分析[J]. 系统工程理论与实践, 2016, 36(5): 1340-1345
CUI Tiejun, MA Yundong. Inaccurate reason analysis of the factors projection fitting method in DSFT[J]. Systems engineering-theory & practice, 2016, 36(5): 1340-1345
[24] 崔铁军, 汪培庄, 马云东. 01SFT中的系统因素结构反分析方法研究[J]. 系统工程理论与实践, 2016, 36(8): 2152-2160
CUI Tiejun, WANG Peizhuang, MA Yundong. Inward analysis of system factor structure in 01 space fault tree[J]. Systems engineering-theory & practice, 2016, 36(8): 2152-2160
[25] 崔铁军, 马云东. 基于因素空间的煤矿安全情况区分方法的研究[J]. 系统工程理论与实践, 2015, 35(11): 2891-2897
CUI Tiejun, MA Yundong. Research on the classification method about coal mine safety situation based on the factor space[J]. Systems engineering-theory & practice, 2015, 35(11): 2891-2897
[26] 崔铁军, 马云东. 因素空间的属性圆定义及其在对象分类中的应用[J]. 计算机工程与科学, 2015, 37(11): 2169-2174
CUI Tiejun, MA Yundong. Definition of attribute circle in factor space and its application in object classification[J]. Computer engineering & science, 2015, 37(11): 2169-2174
[27] 崔铁军, 汪培庄. 空间故障树与因素空间融合的智能可靠性分析方法[J]. 智能系统学报, 2019, 14(5): 853-864
CUI Tiejun, WANG Peizhuang. Intelligent reliability analysis method based on space fault tree and factor space[J]. CAAI transactions on intelligent systems, 2019, 14(5): 853-864
[28] 崔铁军, 李莎莎, 朱宝艳. 含有单向环的多向环网络结构及其故障概率计算[J]. 中国安全科学学报, 2018, 28(7): 19-24
CUI Tiejun, LI Shasha, ZHU Baoyan. Multidirectional ring network structure with one-way ring and its fault probability calculation[J]. China safety science journal, 2018, 28(7): 19-24
[29] CUI Tiejun, LI Shasha. Research on complex structures in space fault network for fault data mining in system fault evolution process[J]. IEEE access, 2019, 7: 121881-121896.
[30] 崔铁军, 李莎莎. 安全科学中的故障信息转换定律[J]. 智能系统学报, 2020, 15(2): 360-366
CUI Tiejun, LI Shasha. Conversion law of fault information in safety science[J]. CAAI transactions on intelligent systems, 2020, 15(2): 360-366
[31] CUI Tiejun, LI Shasha. System movement space and system mapping theory for reliability of IoT[J]. Future generation computer systems, 2020, 107: 70-81.
[32] 安敬民, 李冠宇. 基于最小信息熵分类的不确定元数据本体构建[J]. 计算机工程与设计, 2018, 39(9): 2758-2763
AN Jingmin, LI Guanyu. MIE-categorized uncertain metadata ontology construction[J]. Computer engineering and design, 2018, 39(9): 2758-2763
[33] 汪培庄. 因素空间与人工智能[J]. 中国人工智能学会通讯, 2020, 10(1): 15-21
WANG Peizhuang. Factor space and artificial intelligence[J]. Communication of China artificial intelligence society, 2020, 10(1): 15-21
Similar References:

Memo

-

Last Update: 2021-12-25

Copyright © CAAI Transactions on Intelligent Systems