[1]DAI Yutong,CHEN Zhiguo,FU Yi.Anti-occlusion retracking technology for a moving target based on correlation filtering[J].CAAI Transactions on Intelligent Systems,2021,16(4):630-640.[doi:10.11992/tis.202005027]
Copy

Anti-occlusion retracking technology for a moving target based on correlation filtering

References:
[1] 吴小俊, 徐天阳, 须文波. 基于相关滤波的视频目标跟踪算法综述[J]. 指挥信息系统与技术, 2017, 8(3): 1-5
WU Xiaojun, XU Tianyang, XU Wenbo. Review of target tracking algorithms in video based on correlation filter[J]. Command information system and technology, 2017, 8(3): 1-5
[2] 张微, 康宝生. 相关滤波目标跟踪进展综述[J]. 中国图象图形学报, 2017, 22(8): 1017-1033
ZHANG Wei, KANG Baosheng. Recent advances in correlation filter-based object tracking: a review[J]. Journal of image and graphics, 2017, 22(8): 1017-1033
[3] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 2544-2550.
[4] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 583-596.
[5] DANELLJAN M, H?GER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference. Nottingham, UK: BMVA Press, 2014.
[6] DANELLJAN M, H?GER G, SHAHBAZ KHAN F, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 4310-4318.
[7] DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 472-488.
[8] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 6638-6646.
[9] LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of 2018 IEEE/CVF Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 6638-6646.
[10] LI Bo, WU Wei, WANG Qiang, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of 2019 Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019.
[11] FAN Heng, LIN Liting, YANG Fan, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of 2019 IEEE/CVF Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019.
[12] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the Circulant structure of tracking by detection with kernels[C]//Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012: 702-715.
[13] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(5): 603-619.
[14] MEI Xue, LING Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(11): 2259-2272.
[15] GRABNER H, GRABNER M. BISCHOF M. Real-time tracking via on-line boosting[C]//Proceedings of 2006 British Machine Vision Conference. Edinburgh, UK: BMVC, 2006: 47-56.
[16] DANELLJAN M, SHAHBAZ KHAN F, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 1090-1097.
[17] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 1401-1409.
[18] VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2805-2813.
[19] 包晓安, 詹秀娟, 王强, 等. 基于KCF和SIFT特征的抗遮挡目标跟踪算法[J]. 计算机测量与控制, 2018, 26(5): 148-152
BAO Xiaoan, ZHAN Xiujuan, WANG QIANG, et al. Anti occlusion target tracking algorithm based on KCF and SIFT feature[J]. Computer measurement and control, 2018, 26(5): 148-152
[20] 闫河, 张杨, 杨晓龙, 等. 一种抗遮挡核相关滤波目标跟踪算法[J]. 光电子·激光, 2018, 29(6): 647-652
YAN He, ZHANG Yang, YANG Xiaolong, et al. A kernelized correlaton filters with occlusion handling[J]. Journal of optoelectronics·laser, 2018, 29(6): 647-652
[21] FARAGHER R. Understanding the basis of the Kalman filter via a simple and intuitive derivation [Lecture Notes][J]. IEEE signal processing magazine, 2012, 29(5): 128-132.
[22] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 4904-4913.
[23] LI Yang, ZHU Jianke, HOI S C H, et al. Robust estimation of similarity transformation for visual object tracking[C]//Proceedings of the 3rd AAAI Conference on Artificial Intelligence, AAAI 2019, The 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019. Honolulu, Hawaii, USA: AAAI, 2019: 8666-8673.
[24] LI Yang, ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature integration[C]//Proceedings of 2014 European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 254-265.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems