[1]ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16(1):108-116.[doi:10.11992/tis.202004033]
Copy

Small target detection based on a combination of feature pyramid and CornerNet

References:
[1] 赵永强, 饶元, 董世鹏,等. 深度学习目标检测方法综述[J]. 中国图象图形学报, 2020, 25(4):629-654
ZHAO Yongqiang, RAO Yuan, DONG Shipeng, et al. Survey on deep learning object detection[J]. Journal of image and graphics, 2020, 25(4):629-654
[2] 赵文清, 周震东, 翟永杰. 基于反卷积和特征融合的SSD小目标检测算法[J]. 智能系统学报, 2020, 15(2):310-316.
ZHAO Wenqing, ZHOU Zhendong, ZHAI Yongjie. SSD small target detection algorithm based on deconvolution and feature fusion[J]. CAAI transactions on intelligent systems, 2020, 15(2):310-316.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[4] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9):1904-1916.
[5] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:2961-2969.
[6] 段仲静, 李少波, 胡建军, 等. 深度学习目标检测方法及主流框架综述[J]. 激光与光电子学进展, 2020, 57(12):1-16.
DUAN Zhongjing, LI Shaobo, HU Jianjun,et al. Review of deep learning target detection methods and mainstream frameworks[J]. Progress in laser and optoelectronics, 2020, 57(12):1-16.
[7] LIU Wei, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779-788.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:2980-2988.
[10] 刘俊明, 孟卫华. 基于深度学习的单阶段目标检测算法研究综述[J]. 航空兵器, 2020, 27(3):44-53.
LIU Junming, MENG Weihua. Review of single-stage target detection algorithm based on deep learning[J]. AERO weapons, 2020, 27(3):44-53.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2117-2125.
[12] 陈景明, 金杰, 王伟锋. 基于特征金字塔网络的改进算法[J]. 激光与光电子学进展, 2019, 56(21):165-170
CHEN Jingming, JIN Jie, WANG Weifeng. Improved algorithm based on characteristic pyramid network[J]. Laser and optoelectronics progress, 2019, 56(21):165-170
[13] LAW H, DENG Jia. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany, 2018:734-750.
[14] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:483-499.
[15] 和超, 张印辉, 何自芬. 多尺度特征融合工件目标语义分割[J]. 中国图象图形学报, 2020, 25(3):476-485
HE Chao, ZHANG Yinhui, HE Zifen. Multi scale feature fusion for object semantic segmentation[J]. Journal of image and graphic, 2020, 25(3):476-485
[16] CAO Guimei, XIE Xuemei, YANG Wenzhe, et al. Feature-fused SSD:fast detection for small objects[C]//Proceedings of SPIE 10615, Ninth International Conference on Graphic and Image Processing. Qingdao, China, 2018:106151E.
[17] 鞠默然, 罗江宁, 王仲博, 等. 一种融合注意力机制的多尺度目标检测算法[J]. 光学学报, 2020, 40(13):126-134.
JU Moran, LUO Jiangning, WANG Zhongbo, et al. Multi-scale target detection algorithm based on attention mechanism[J]. Acta optica sinica, 2020, 40(13):126-134.
[18] 王慧玲, 綦小龙, 武港山. 基于深度卷积神经网络的目标检测技术的研究进展[J]. 计算机科学, 2018, 45(9):11-19
WANG Huiling, QI Xiaolong, WU Gangshan. Research progress of target detection technology based on deep convolution neural network[J]. Computer science, 2018, 45(9):11-19
[19] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea, 2019:9627-9636.
[20] 李晓光, 付陈平, 李晓莉, 等. 面向多尺度目标检测的改进Faster R-CNN算法[J]. 计算机辅助设计与图形学学报, 2019, 31(7):1095-1101
LI Xiaoguang, FU Chenping, LI Xiaoli, et al. Improved faster R-CNN for multi-scale object detection[J]. Journal of computer-aided design and computer graphics, 2019, 31(7):1095-1101
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:740-755.
[22] 李航, 朱明. 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42(4):649-657
LI Hang, ZHU Ming. A small object detection algorithm based on deep convolutional neural network[J]. Computer engineering and science, 2020, 42(4):649-657
Similar References:

Memo

-

Last Update: 2021-02-25

Copyright © CAAI Transactions on Intelligent Systems