[1]PU Shiye,LIU Sanyang,BAI Yiguang.Imbalanced data classification of network topology characteristics[J].CAAI Transactions on Intelligent Systems,2019,14(5):889-896.[doi:10.11992/tis.201812014]
Copy

Imbalanced data classification of network topology characteristics

References:
[1] HE Haibo, GARCIA E A. Learning from imbalanced data[J]. IEEE transactions on knowledge and data engineering, 2009, 21(9):1263-1284.
[2] KHOSHGOFTAAR T M, GOLAWALA M, VAN HULSE J. An empirical study of learning from imbalanced data using random forest[C]//Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence. Patras, Greece, 2007:310-317.
[3] LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2):464-471.
[4] 程险峰, 李军, 李雄飞. 一种基于欠采样的不平衡数据分类算法[J]. 计算机工程, 2011, 37(13):147-149 CHENG Xianfeng, LI Jun, LI Xiongfei. Imbalanced data classification algorithm based on undersampling[J]. Computer engineering, 2011, 37(13):147-149
[5] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2011, 16(1):321-357.
[6] VEROPOULOS K, CAMPBELL I C G, CRISTIANINI N. Controlling the sensitivity of support vector machines[C]//Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999:55-60.
[7] 张银峰, 郭华平, 职为梅, 等. 一种面向不平衡数据分类的组合剪枝方法[J]. 计算机工程, 2014, 40(6):157-161, 165 ZHANG Yinfeng, GUO Huaping, ZHI Weimei, et al. An ensemble pruning method for imbalanced data classification[J]. Computer engineering, 2014, 40(6):157-161, 165
[8] SILVA T C, ZHAO Liang. Network-based high level data classification[J]. IEEE transactions on neural networks and learning systems, 2012, 23(6):954-970.
[9] SILVA T C, ZHAO Liang. High-level pattern-based classification via tourist walks in networks[J]. Information sciences, 2015, 294:109-126.
[10] CARNEIRO M G, ZHAO Liang. Organizational data classification based on the importance concept of complex networks[J]. IEEE transactions on neural networks and learning systems, 2018, 29(8):3361-3373.
[11] BERTINI JR J R, ZHAO Liang, MOTTA R, et al. A nonparametric classification method based on K-associated graphs[J]. Information sciences, 2011, 181(24):5435-5456.
[12] Lü Linyuan, ZHOU Tao. Link prediction in complex networks:A survey[J]. Physical A:statistical mechanics and its applications, 2011, 390(6):1150-1170.
[13] ZHANG Qianming, SHANG Mingsheng, Lü Linyuan. Similarity-based classification in partially Labeled networks[J]. International journal of modern physical C, 2010, 21(6):813-824.
[14] BIRX D L, PIPENBERG S J. A complex mapping network for phase sensitive classification[J]. IEEE transactions on neural networks, 1993, 4(1):127-135.
[15] WANG Meng, FU Weijie, HAO Shijie, et al. Learning on big graph:label inference and regularization with anchor hierarchy[J]. IEEE transactions on knowledge and data engineering, 2017, 29(5):1101-1114.
[16] CONG Chen, LIU Tongliang, TAO Dacheng, et al. Deformed graph laplacian for semisupervised learning[J]. IEEE transactions on neural networks and learning systems, 2015, 26(10):2261-2274.
[17] 顾苏杭, 王士同. 基于数据点本身及其位置关系辅助信息挖掘的分类方法[J]. 模式识别与人工智能, 2018, 31(3):197-207 GU Suhang, WANG Shitong. Classification approach by mining betweenness information beyond data points themselves[J]. Pattern recognition and artificial intelligence, 2018, 31(3):197-207
[18] TSANG I W H, KWOK J T Y, ZURADA J M. Generalized core vector machines[J]. IEEE transactions on neural networks, 2006, 17(5):1126-1140.
[19] 赵自翔, 王广亮, 李晓东. 基于支持向量机的不平衡数据分类的改进欠采样方法[J]. 中山大学学报(自然科学版), 2012, 51(6):10-16 ZHAO Zixiang, WANG Guangliang, LI Xiaodong. An improved SVM based under-sampling method for classifying imbalanced data[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6):10-16
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems