[1]LIN Yanqing,FU Yanggeng.NSGA-II-based EBRB rules activation multi-objective optimization[J].CAAI Transactions on Intelligent Systems,2018,13(3):422-430.[doi:10.11992/tis.201710012]
Copy

NSGA-II-based EBRB rules activation multi-objective optimization

References:
[1] 周志杰, 杨剑波, 胡昌华, 等. 置信规则库专家系统与复杂系统建模[M]. 北京:科学出版社, 2011.
[2] YANG Jianbo, LIU Jun, WANG Jin, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE transactions on systems, man, and cybernetics-part A:systems and humans, 2006, 36(2):266-285.
[3] DEMPSTER A P. A generalization of Bayesian inference[J]. Journal of the royal statistical society. Series B (methodological), 1968, 30(2):205-247.
[4] SHAFER G. A mathematical theory of evidence[M]. Princeton:Princeton University Press, 1976.
[5] HWANG C L, YOON K. Multiple attribute decision making:methods and applications a state of the art survey[M]. New York:Springer, 1981:22-34.
[6] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3):338-353.
[7] ZHOU Zhijie, HU Changhua, YANG Jianbo, et al. Online updating belief rule based system for pipeline leak detection under expert intervention[J]. Expert systems with applications, 2009, 36(4):7700-7709.
[8] XU Dongling, LIU Jun, YANG Jianbo, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection[J]. Expert systems with applications, 2007, 32(1):103-113.
[9] YANG Jianbo, LIU Jun, XU Dongling, et al. Optimization models for training belief-rule-based systems[J]. IEEE transactions on systems, man, and cybernetics-part A:systems and humans, 2007, 37(4):569-585.
[10] YANG Ying, FU Chao, CHEN Yuwang, et al. A belief rule based expert system for predicting consumer preference in new product development[J]. Knowledge-based systems, 2016, 94:105-113.
[11] JIANG Jiang, LI Xuan, ZHOU Zhijie, et al. Weapon system capability assessment under uncertainty based on the evidential reasoning approach[J]. Expert systems with applications, 2011, 38(11):13773-13784.
[12] 杨隆浩, 蔡芷铃, 黄志鑫, 等. 出租车乘车概率预测的置信规则库推理方法[J]. 计算机科学与探索, 2015, 9(8):985-994. YANG Longhao, CAI Zhiling, HUANG Zhixin, et al. Belief rule-base inference methodology for predicting probability of taking taxi[J]. Journal of frontiers of computer science and technology, 2015, 9(8):985-994.
[13] CHEN Yuwang, YANG Jianbo, XU Dongling, et al. Inference analysis and adaptive training for belief rule based systems[J]. Expert systems with applications, 2011, 38(10):12845-12860.
[14] 常瑞, 张速. 基于优化步长和梯度法的置信规则库参数学习方法[J]. 华北水利水电学院学报, 2011,32(1):154-157. Chang Rui, Zhang Su. An algorithm for training parameters in belief rule-bases based on the gradient methods with optimization step size[J]. Journal of north China institute of water conservancy and hydroelectric power, 2011, 32(1):154-157.
[15] 吴伟昆, 杨隆浩, 傅仰耿, 等. 基于加速梯度求法的置信规则库参数训练方法[J]. 计算机科学与探索, 2014, 8(8):989-1001. WU Weikun, YANG Longhao, FU Yanggeng, et al. Parameter training approach for belief rule base using the accelerating of gradient algorithm[J]. Journal of frontiers of computer science and technology, 2014, 8(8):989-1001.
[16] 苏群, 杨隆浩, 傅仰耿, 等. 基于变速粒子群优化的置信规则库参数训练方法[J]. 计算机应用, 2014, 34(8):2161-2165. SU Qun, YANG Longhao, FU Yanggeng, et al. Parameter training approach based on variable particle swarm optimization for belief rule base[J]. Journal of computer application, 2014, 34(8):2161-2165.
[17] 王韩杰, 杨隆浩, 傅仰耿, 等. 专家干预下置信规则库参数训练的差分进化算法[J]. 计算机科学, 2015, 42(5):88-93. WANG Hanjie, YANG Longhao, FU Yanggeng, et al. Differential evolutionary algorithm for parameter training of belief rule base under expert intervention[J]. Computer science, 2015, 42(5):88-93.
[18] ZHOU Zhijie, HU Changhua, YANG Jianbo, et al. A sequential learning algorithm for online constructing belief-rule-based systems[J]. Expert systems with applications, 2010, 37(2):1790-1799.
[19] CHANG Leilei, ZHOU Yu, JIANG Jiang, et al. Structure learning for belief rule base expert system:a comparative study[J]. Knowledge-based systems, 2013, 39:159-172.
[20] 王应明, 杨隆浩, 常雷雷, 等. 置信规则库规则约简的粗糙集方法[J]. 控制与决策, 2014, 29(11):1943-1950. WANG Yingming, YANG Longhao, CHANG Leilei, et al. Rough set method for rule reduction in belief rule base[J]. Control and decision, 2014, 29(11):1943-1950.
[21] LIU Jun, MARTINEZ L, CALZADA A, et al. A novel belief rule base representation, generation and its inference methodology[J]. Knowledge-based systems, 2013, 53:129-141.
[22] CALZADA A, LIU Jun, WANG Hui, et al. A new dynamic rule activation method for extended belief rule-based systems[J]. IEEE Transactions on knowledge and data engineering, 2015, 7(4):880-894.
[23] YANG Jianbo. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European journal of operational research, 2001, 131(1):31-61.
[24] WANG Yingming, YANG Jianbo, XU Dongling. Environmental impact assessment using the evidential reasoning approach[J]. European journal of operational research, 2006, 174(3):1885-1913.
[25] WANG Yingming, YANG Jianbo, XU Dongling, et al. Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology[J]. Expert systems with applications, 2009, 36(4):8421-8430.
[26] ZITZLER E. Evolutionary algorithm for multi-objective optimization:methods and applications[D]. Zurich:Swiss Federal Institute of Technology, 1999.
[27] DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[C]//Proceedings of the 6th International Conference Paris Parallel Problem Solving from Nature PPSN VI. Kanpur, India, 2000.
[28] 苏群, 杨隆浩, 傅仰耿, 等. 基于BK树的扩展置信规则库结构优化框架[J]. 计算机科学与探索, 2016, 10(2):257-267. SU Qun, YANG Longhao, FU Yanggeng, et al. Structure optimization framework of extended belief rule base based on BK-tree[J]. Journal of frontiers of computer science and technology, 2016, 10(2):257-267.
Similar References:

Memo

-

Last Update: 2018-06-25

Copyright © CAAI Transactions on Intelligent Systems