[1]GUO Longwei,GUAN Xin,LI Qiang.Recognition of difficulty level of piano score based on metric learning support vector machine[J].CAAI Transactions on Intelligent Systems,2018,13(2):196-201.[doi:10.11992/tis.201612012]
Copy

Recognition of difficulty level of piano score based on metric learning support vector machine

References:
[1] CHIU S C, CHEN M S. A study on difficulty level recognition of piano sheet music[C]//IEEE International Symposium on Multimedia. Irvine, CA, USA: IEEE, 2012: 17-23.
[2] ROBNIK-?IKONJA M, KONONENKO I. Theoretical and empirical analysis of Relief[J]. Machine learning, 2003, 53(1/2): 23-69.
[3] JAMES G, WITTEN D, HASTIE T, et al. An introduction to statistical learning with applications in R[M]. New York: Springer, 2013: 59-102.
[4] SMOLA A J, SCH?LKOPF B. A tutorial on support vector regression[J]. Statistics and computing, 2003, 14(3): 199-222.
[5] SéBASTIEN V, RALAMBONDRAINY H, SéBASTIEN O, et al. Score analyzer: automatically determining scores difficulty level for instrumental e-learning[C]//Proceedings of the 13th International Society for Music Information Retrieval Conference. Porto, Portugal: ISMIR, 2012: 571-576.
[6] CASTAN G, GOOD M, ROLAND P. Extensible markup language (XML) for music applications: an introduction, the virtual score: representation, retrieval, restoration[M]. Cambridge: MIT Press, 2001: 95-102.
[7] WARD JR J H. Hierarchical grouping to optimize an ob-jective function[J]. Journal of the American statistical association, 1963, 58(301): 236-244.
[8] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.
DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of university of electronic science and technology of China, 201l, 40(1): 2-10.
[9] LI Shutao, KWOK J T, ZHU Hailong, et al. Texture clas-sification using the support vector machines[J]. Pattern recog-nition, 2003, 36(12): 2883-2893.
[10] SIMON T, KOLLER D. Support vector machine active learning with applications to text classification[J]. The journal of machine learning research, 2002, 2: 45-66.
[11] OSUNA E, FREUND R, GIROSIT F. Training support vector machines: an application to face detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, USA: IEEE, 1997: 130-136.
[12] WAN V, CAMPBELL W M. Support vector machines for speaker verification and identification[C]//Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop. Sydney, NSW, Australia: IEEE, 2000, 2: 775-784.
[13] SCH?LKOPF B, SMOLA, A J. Learning with kernels[M]. GMD-For Schungszentrum Information Stechnik, 1998: 5-93.
[14] KULIS B. Metric learning: a survey[J]. Foundations and trends in machine learning, 2012, 5(4), 287-364.
[15] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of machine learning research, 2009, 10: 207-244.
[16] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE transactions on neural networks, 2002, 13(2): 415-425.
[17] MIDI Manufacturers Association. An introduction to MIDI[M]. California: MIDI Manufacturers Association, 2009: 1-16.
[18] Fours set data sources[EB/OL]. [2015-07-24]. http://www.8notes.com.
[19] HOSMER D W, LEMESHOW S. Applied logistic regres-sion[M]. New York: Wiley, 2000: 31-46.
[20] WESTON J, WATKINS C. Multi-class support vector machines, CSD-TR-98-04[R/OL]. Egham: Royal Holloway University of London, 1998: 1-10.
[21] CHANG C C, LIN C J. LIBSVM——a library for support vector machines[J/OL]. ACM transactions on intelligent systems and technology, 2011, 2(3): 27.
[22] 徐晓明. SVM参数寻优及其在分类中的应用[D]. 大连: 大连海事大学, 2014: 6-58.
XU Xiaoming. SVM parameter optimization and its application in the classification[D]. Dalian: Dalian Maritime University, 2014: 6-58.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems