[1]ZHOU Houfei,LIU Huaping,SHI Hongxing.Abnormal driving behavior detection based on the smart phone[J].CAAI Transactions on Intelligent Systems,2016,11(3):410-417.[doi:10.11992/tis.201504022]
Copy

Abnormal driving behavior detection based on the smart phone

References:
[1] KWAPISZ J R, WEISS G M, MOORE S A. Activity recognition using cell phone accelerometers[C]//Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data. Washington, DC, USA, 2010, 12(2): 74-82.
[2] FANG S H, LIANG Y C, CHIU K M. Developing a mobile phone-based fall detection system on android platform[C]//Proceedings of Computing, Communications and Applications Conference. Hong Kong, China, 2012: 143-146.
[3] VIET V Q, LEE G, CHOI D. Fall detection based on movement and smart phone technology[C]//Proceedings of IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, And Vision For The Future. Ho Chi Minh City, Vietnam, 2012: 1-4.
[4] ZHANG Shumei, MCCULLAGH P, NUGENT C, et al. Activity monitoring using a smart phone’s accelerometer with hierarchical classification[C]//Proceedings of the 6th International Conference on Intelligent Environments. Kuala Lumpur, Malaysia, 2010: 158-163.
[5] ZHAO Zhongtang, CHEN Yiqiang, LIU Junfa, et al. Fall detecting and alarming based on mobile phone[C]//Proceedings of Ubiquitous Intelligence & Computing and the 7th International Conference on Autonomic & Trusted Computing. Xi’an, China, 2010: 494-497.
[6] BAI Yingwen, WU S C, TSAI C L. Design and implementation of a fall monitor system by using a 3-axis accelerometer in a smart phone[C]//Proceedings of the 16th International Symposium on Consumer Electronics. Harrisburg, PA, USA, 2012: 1-6.
[7] DAI Jiangpeng, TENG Jin, BAI Xiaole, et al. Mobile phone based drunk driving detection[C]//Proceedings of the 4th International Conference on-NO Permissions, Pervasive Computing Technologies for Healthcare. Munich, Germany, 2010: 1-8.
[8] PAEFGEN J, KEHR F, ZHAI Yudan, et al. Driving behavior analysis with smartphones: insights from a controlled field study[C]//Proceedings of the 11th Conference on Mobile and Ubiquitous Multimedia. New York, NY, USA, 2012: 408-414.
[9] XU Lunbo, LI Shunyang, BIAN Kaigui, et al. Sober-Drive: A smartphone-assisted drowsy driving detection system[C]//Proceedings of International Conference on Computing, Networking and Communications. Honolulu, HI, USA, 2014: 398-402.
[10] EREN H, MAKINIST S, AKIN E, et al. Estimating driving behavior by a smartphone[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Alcalá de Henares, Spain, 2012: 234-239.
[11] FAZEEN M, GOZICK B, DANTU R, et al. Safe driving usin g mobile phones[J]. IEEE transactions on intelligent transportation systems, 2012, 13(3): 1462-1468.
[12] 李伟健, 林亚平, 叶松涛. 智能手机碰撞检测及在汽车事故自救中的应用[J]. 计算机工程, 2011, 37(9): 245-247.LI Weijian, LIN Yaping, YE Songtao. Shock detection with smart mobile phone and its application in car accident self-rescue[J]. Computer engineering, 2011, 37(9): 245-247.
[13] 赵龙, 闵昆龙, 韩玉杰. 基于智能手机群的车辆事故自救系统[J]. 计算机系统应用, 2013, 22(2): 34-37. ZHAO Long, MIN Kunlong, HAN Yujie. Vehicle accident self-rescue system based on smart mobile phone groups[J]. Computer systems & applications, 2013, 22(2): 34-37.
[14] HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Budapest, Hungary, 2004, 2: 985-990.
[15] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[16] FUNG G, MANGASARIAN O L. Proximal support vector machine classifier[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA, 2001: 77-86.
[17] HUANG Guangbin, DING Xiaojian, ZHOU Hongming. Optimization method based extreme learning machine for classification[J]. Neurocomputing, 2010, 74(1/2/3): 155-163.
[18] 肖艳丽, 张振宇, 杨文忠. 移动数据的交通出行方式识别方法[J]. 智能系统学报, 2014, 9(5): 536-543. XIAO Yanli, ZHANG Zhenyu, YANG Wenzhong. Research of the identification methods for transportation modes based on mobile data[J]. CAAI transactions on intelligent systems, 2014, 9(5): 536-543.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems