[1]HAN Zhonghua,ZHU Yihang,SHI Haibo,et al.A co-evolution CGA solution for the flexible flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2015,10(4):562-568.[doi:10.3969/j.issn.1673-4785.201503045]
Copy

A co-evolution CGA solution for the flexible flow shop scheduling problem

References:
[1] RUIZ R, VáZQUEZ-RODRíGUEZ J A. The hybrid flow shop scheduling problem[J]. European Journal of Operational Research, 2010, 205(1): 1-18.
[2] JOHNSON S M. Optimal two-and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1(1): 61-68.
[3] HOOGEVEEN J A, LENSTRA J K, VELTMAN B. Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard[J]. European Journal of Operational Research, 1996, 89(1): 172-175.
[4] SRISKANDARAJAH C, SETHI S P. Scheduling algorithms for flexible flowshops: worst and average case performance[J]. European Journal of Operational Research, 1989, 43(2): 143-160.
[5] ENGIN O, CERAN G, YILMAZ M K. An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems[J]. Applied Soft Computing, 2011, 11(3): 3056-3065.
[6] SINGH M R, MAHAPATRA S S. A swarm optimization approach for flexible flow shop scheduling with multiprocessor tasks[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62(1/2/3/4): 267-277.
[7] XU Y, WANG L, WANG S Y, et al. An effective immune algorithm based on novel dispatching rules for the flexible flow-shop scheduling problem with multiprocessor tasks[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1/2/3/4): 121-135.
[8] 王圣尧, 王凌, 许烨. 求解相同并行机混合流水线车间调度问题的分布估计算法[J]. 计算机集成制造系统, 2013, 19(6): 1304-1312. WANG Shengyao, WANG Ling, XU Ye. Estimation of distribution algorithm for solving hybrid flow-shop scheduling problem with identical parallel machine [J]. Computer Integrated Manufacturing Systems, 2013, 19 (6): 1304-1312.
[9] 王圣尧, 王凌, 方晨,等. 分布估计算法研究进展 [J]. 控制与决策, 2012, 27(7): 961-966, 974. WANG Shengyao, WANG Ling, FANG Chen, et al. Advances in estimation of distribution algorithms [J]. Control and Decision, 2012, 27(7): 961-966, 974.
[10] HARIK G R, LOBO F G, GOLDBERG D E. The compact genetic algorithm[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 287-297.
[11] DELAOSSA L, GáMEZ J A, MATEO J L, et al. Avoiding premature convergence in estimation of distribution algorithms[C]//IEEE Congress on Evolutionary Computation, 2009. Trondheim: IEEE, 2009: 455-462.
[12] LEE J Y, KIM M S, LEE J J. Compact Genetic Algorithms using belief vectors[J]. Applied Soft Computing, 2011, 11(4): 3385-3401.
[13] GALLAGHER J C, VIGRAHAM S, KRAMER G. A family of compact genetic algorithms for intrinsic evolvable hardware[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 111-126.
[14] MORENO-ARMENDáRIZ M A, CRUZ-CORTéS N, DUCHANOY C A, et al. Hardware implementation of the elitist compact Genetic Algorithm using Cellular Automata pseudo-random number generator[J]. Computers & Electrical Engineering, 2013, 39(4): 1367-1379.
[15] NAKATA M, LANZI P L, TAKADAMA K. Simple compact genetic algorithm for XCS[C]//2013 IEEE Congress on Evolutionary Computation (CEC). Cancun: IEEE, 2013: 1718-1723.
[16] 刘昶, 李冬, 彭慧,等. 求解混合流水生产线调度问题的变量相关 EDA 算法[J]. 计算机集成制造系统, 2014:(1):15-18. LIU Chang, LI Dong, PENG Hui, et al. An EDA algorithm with correlated variables for solving hybrid flow-shop scheduling problem [J]. Computer Integrated Manufacturing Systems, 2014:(1):15-18.
[17] CARLIER J, NéRON E. An exact method for solving the multi-processor flow-shop[J]. RAIRO-Operations Research, 2000, 34(1): 1-25.
Similar References:

Memo

-

Last Update: 2015-08-28

Copyright © CAAI Transactions on Intelligent Systems