[1]ZHANG Duo,HAN Fengqing.Stratum identification based on the SVM and ordered cluster[J].CAAI Transactions on Intelligent Systems,2014,9(1):98-103.[doi:10.3969/j.issn.1673-4785.201304019]
Copy

Stratum identification based on the SVM and ordered cluster

References:
[1] 林海燕,戴云,肖慈珣.一种基于沃希变换的测井自动分层方法[J].成都理工学院学报, 1999, 26(1): 52-57.LIN Haiyan, DAI Yun, XIAO Cixun. A well-log automated identification of rock boundaries method based on Walsh transform[J]. Journal of Chengdu University of Technology, 1999, 26(1): 52-57.
[2] 肖波,韩学辉,周开金.测井曲线自动分层方法回归与展望[J].地球物理学进展, 2010, 25(5): 1802-1810.XIAO Bo, HAN Xuehui, ZHOU Kaijin. A review and outlook of automatic zonation methods of well log[J]. Progress in Geophysics, 2010, 25(5): 1802-1810.
[3] WOLF M, PELISSIER-COMBESCURE J. Faciolog automatic electrofacies determination[C]//SPWLA 23rd Annual Logging Symposium. Corpus Christi, USA, 1982: 6-9.
[4] HAWKINS D M, MERRIAM D F. Optimal zonation of digitized sequential data[J]. Mathematical Geology, 1973, 5(4): 389-396.
[5] 张明玉.极值方差聚类法在测井分层取值中的应用[J].新疆石油地质, 2002, 23(5): 429-431.ZHANG Mingyu. Application of minimax variance cluster analysis method in well log layering[J]. Xinjiang Petroleum Geology, 2002, 23(5): 429-431.
[6] 宋延杰,张剑风,闫伟林,等.基于支持向量机的复杂岩性测井识别方法[J].大庆石油学院学报, 2007, 31(5): 18-20.SONG Yanjie, ZHANG Jianfeng, YAN Weilin, et al. A new identification method for complex lithology with support vector machine[J]. Journal of Daqing Petroleum Institute, 2007, 31(5): 18-20.
[7] 赵军,程鹏飞,刘地渊,等.支持向量机在水淹层测井识别的应用[J].物探与化探, 2008, 32(6): 652-655.ZHAO Jun, CHENG Pengfei, LIU Diyuan, et al. The application of the support vector machine to the recognition of flooding formation[J]. Geophysical and Geochemical Exploration, 2008, 32(6): 652-655.
[8] 文政,高松洋,毕广武.支持向量机在复杂岩性测井识别中的应用[J].大庆石油地质与开发, 2009, 28(1): 134-137.WEN Zheng, GAO Songyang, BI Guangwu. Application of support vector machine (SVM) in complex lithology identification by well logging[J]. Petroleum Geology and Oilfield Development in Daqing, 2009, 28(1): 134-137.
[9] VAPNIK V. The nature of statistical learning theory[M]. New York, USA: Springer-Verlag, 1995.
[10] 刘跃辉,郑建东.基于支持向量机原理的复杂地层岩性识别方法[J].国外测井技术, 2011(4): 22-26.LIU Yuehui, ZHENG Jiandong. The lithology identification method based on support vector machine principle[J]. World Well Logging Technology, 2011(4): 22-26.
[11] 李茂宽,关键.基于模糊C均值的支持向量机数据分类识别[J].系统仿真学报, 2005, 17(7): 1785-1787.LI Maokuan, GUAN Jian. Data classification and recognition of support vector machines based on fuzzy C-means clustering[J]. Journal of System Simulation, 2005, 17(7): 1785-1787.
[12] 柯永振,张加万,孙济洲,等.结合支持向量机与C均值聚类的图像分割[J].计算机应用, 2006, 26(9): 2081-2083.KE Yongzhen, ZHANG Jiawan, SUN Jizhou, et al. Image segmentation combining support vector machines with C-means[J]. Journal of Computer Applications, 2006, 26(9): 2081-2083.
[13] 万应明,高峻,董建平,等.多测井曲线合成应用方法初探[J]. 石油物探, 2005, 44(1): 71-75.WAN Yingming, GAO Jun, DONG Jianping, et al. The primary discussion to the application of synthetic multiple-logging[J]. Geophysical Prospecting for Petroleum, 2005, 44(1): 71-75.
[14] 赵磊,李国和,马现峰.基于支持向量机的地层识别研究[J].计算机工程与应用, 2006, 35(1): 230-232.ZHAO Lei, LI Guohe, MA Xianfeng. Research of stratum recognition based on support vector machine[J]. Computer Engineering and Applications, 2006, 35(1): 230-232.
[15] 郑延斌,李国和.支持向量机在地层识别中的应用[J].河南师范大学学报:自然科学版, 2009, 37(2): 37-39.ZHENG Yanbin, LI Guohe. Application of support vector machine to stratum recognition[J]. Journal of Henan Normal University: Natural Science, 2009, 37(2): 37-39.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems