[1]XU Lisha,QIAN Xiaoshan,YANG Chunhua.Parameter prediction of multieffect evaporation process combining GM(1,1) with LSSVM[J].CAAI Transactions on Intelligent Systems,2012,7(5):462-466.
Copy

Parameter prediction of multieffect evaporation process combining GM(1,1) with LSSVM

References:
[1]王晓兰,王明伟.基于小波分解和最小二乘支持向量机的短期风速预测[J].电网技术, 2010, 34(1): 179184. 
WANG Xiaolan, WANG Mingwei. Shortterm wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179184.
[2]张华,任若恩.基于小波分解和残差GM(1,1)AR的非平稳时间序列预测[J].系统工程理论与实践, 2010, 30(6): 10161020. 
ZHANG Hua, REN Ruoen. Nonstationary time series prediction based on wavelet decomposition and remanet GM(1,1)AR[J]. Systems Engineering Theory and Practice, 2010, 30(6): 10161020.
[3]LI Derchiang, FANG Yaohwei. An algorithm to cluster data for efficient classification of support vector machines[J]. Expert Systems with Applications, 2008, 34(3): 20132018.
[4]COMAK E, ARSLAN A. A new training method for support vector machines: clustering kNN support vector machines[J]. Expert Systems with Applications, 2008, 35(3): 564568.
[5]KULKARNI A, JAYARAMAN V K, KULKARNI B D. Knowledge incorporated support vector machines to detect faults in Tennessee Eastman process[J]. Computers & Chemical Engineering, 2005, 29(10): 21282133. 
[6]MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674693.
[7]胡昌华,李国华,刘涛,等.基于MATLAB 6.X的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社, 2004: 4549.
[8]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].北京:科学出版社, 2004: 1213.
[9]VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988999.
[10]SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293300.
[11]SUYKENS J A K. Optimal control by least squares support vector machines[J]. Neural Networks, 2001, 14(1): 2325.
[12]邓兴升.统计学习理论在大地测量中的应用[D].武汉:武汉大学, 2007: 6670. 
DENG Xingsheng. The application of statistical learning theory in geodesy[D]. Wuhang: Wuhang University, 2007: 6670.
[13]CRITINANINI N, SHAWETAYLOR J. An introduction to support vector machines and other kernelbased learning methods[M]. London, UK: Cambridge University Press, 2000: 2527.
[14]邓乃扬,田英杰.支持向量机——理论、算法与拓展[M].北京:科学出版社, 2004: 1517.
Similar References:

Memo

-

Last Update: 2012-11-13

Copyright © CAAI Transactions on Intelligent Systems