[1]YU Kui,WANG Hao,YAO Hong-liang.A dynamic influence diagram for dynamic decision processes[J].CAAI Transactions on Intelligent Systems,2008,3(2):159-166.
Copy

A dynamic influence diagram for dynamic decision processes

References:
[1] KAELB LING L P, LITTMAN M L, MOORE A W. Reinforcement learning: a survey[J]. Journal of Artificial Intelligence Research, 1996,4: 237285.
[2]POUPART P. Exploiting structure to efficiently solve large scale partiall y observable markov decision processes\[D\]. Toronto:University of Toronto, 2005.
[3]KAELBLING L P, LITTMAN M L, CASSANDRA A R. Planning and acting in partiall y observable stochastic domains[J]. Artificial Intelligence, 1998, 101: 99134. 
[4]MICHAEL J, YISHAY M, ANDREW Y. Ng approximate planning in la rg e POMDPs via reusable trajectories[C]// Advances in Neural Information Processing Systems. [S.l.] Cambridge:MIT Press,1999:10011007.[5]NICHOLAS R, GEOFFREY J. Gordon, sebastian thrun: finding approximate POM DP solutions through belief compression[J]. J Artif Intell Res(JAIR), 2005 , 23: 140.
[6]PAPADIMITRIOU C H, TSITSIKLIS J N. The complexity of Markov decisio n processes\[J\]. Mathematics of Operations Research, 1987, 12(3):441450.
[7]LUSENA C, GOLDSMITH J, MUNDHENK M. Nonapproximabilit y results for partially observable Markov decision processes[J]. Journal of Arti ficial Intelligence Research, 2001, 14:83103.
[8]DEAN T,KANAZAWA K. Probabilistic temporal reasoning[C]// National Conference on Artificial Intelligence. Washington:AAAI Press, 1988, 524528.
[9]RONALD A, HOWARD, JAMES E. Readings on the principles and app li cations of decision analysis [M]. [S.l.]: Strategic Decision Group, 1 984.
[10]BOUTILIER C, DEAN T, HANKS S. Decisiontheoretic planning: s tructural a ssumptions and computational leverage[J]. Journal of Artificial Intelligence R esearch, 1999, 11:194.
[11]JOSEPH A, TATMAN, ROSS D, et al. Dynamic programming and influence di agrams[J]. IEEE Transations on Systems, Man, and Cybernetics, 1990, 20(2):365 379.
[12]BRENDA N G. Avi Pfeffer, Factored Particles for Scalable M on itoring[C]// Uncertainty in Artificial Int elligence Morgan Kaufmann. San Francisco, USA,2002:370377.
[13]PRASHANT D, PIOTR G. A particle filtering based appro ac h to approximating interactive POMDPs[C]// P Nati onal Conference on Artificial Intelligence, Menlo Park.AAAI Press,2005:969974.
Similar References:

Memo

-

Last Update: 2009-05-11

Copyright © CAAI Transactions on Intelligent Systems