[1]WANG Shuang-cheng,LI Xiao-lin,HOU Cai-hong.Learning in a hybrid Bayesian network structure for causal analysis[J].CAAI Transactions on Intelligent Systems,2007,2(6):82-90.
Copy

Learning in a hybrid Bayesian network structure for causal analysis

References:
[1] PEARL J. Probabilistic reasoning in intelligent systems: networks of plaus ible inference[M]. San Mateo, Morgan Kaufmann, 1988.
[2]HECKERMAN D, GEIGER D, CHICKERING D M. Learning Bayesian networks: the com bi nation of knowledge and statistical data[J]. Machine Learning, 1995, 20(3): 19 7-243.
[3]SPIRTES P, MEEK C, RICHARDSON T. Causal inference in the presence of laten t variables and selection bias[A]. Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence[C]. Pittsburgh, USA, 1995.
[4]CHICKERING D M. Learning equivalence classes of Bayesian network structure s[J]. Machine Learning, 2002, 2(3): 445-498.
[5]HENSON J. Comparing causality principles[J]. Studies in History and Phil osophy of Modern Physics, 2005, 36(3): 519-543.
[6]THIESSON B, MEEK C, CHICKERING D, HECKERMAN D. Learning mixtures of Bayesi an networks[R]. MSRTR9730, 1997.
[7]MURPHY K P. Inference and learning in hybrid Bayesian networks[R]. CSD 98990,1998.
[8]MONTI S, COOPER G F. learning hybrid Bayesian networks from data[R]. ISSP 9701, 1997.
[9]FAYYAD U, IRANI K. Multinterval discretization of continuousvalued att ribu tes for calssification learning[A]. Proceedings International Joint Confer ence on Artificial Intelligence[C]. Chambery, France, 1993.
[10]LAM W, BACCHUS F. Learning Bayesian belief networks: an approach base d on the MDL principle[J]. Computational Intelligence, 1994, 10(4): 269-293. 
[11]CHICKERING D M. Learning Bayesian networks is NPHard[R]. MSRTR94 17, 1994.
[12]茆诗松,王静龙,濮晓龙.高等数理统计[M]. 北京: 高等教育出版社, 1998 .
?[13]GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions and t he Baye si an restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-742.
[14]CHOW C K, LIU C N. Approximating discrete probability distributions with de pendence trees[J]. IEEE Transactions on Information Theory, 1968, 14(3): 462-4 67.
[15]BUNTINE W L. Chain graphs for learning[A]. Proceedings of the 17th Conference Artificial Intelligence[C]. San Francisco, USA, 1995.
[16]DOMINGOS P, PAZZANI M. On the optimality of the simple Bayesian classifie r under zeroone loss[J]. Machine Learning, 1997, 29(2-3): 103-130.
[17]王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,20 04, 15(7): 1030-1041.
?WANG Shuangcheng, YUAN Senmiao. Research on learning Bayesian networks structu re with missi ng data[J]. Journal of Software, 2004, 15(7): 1030-1041.
[18]王双成,苑森淼.具有丢失数据的可分解马尔科夫网络结构学习[J]. 计算机学报, 2004, 27(9): 1221-1228.
?WANG Shuangcheng, YUAN Senmiao. Learning decomposable Markov network structure with missing data[J]. Chinese Journal of Computers, 2004, 27(9): 1221-1228.
[19]王 飞,刘大有,薛万欣.基于遗传算法的Bayesian网中连续变量离散化的研究[J]. 计算机学报, 2002, 25(8): 794-800.
WANG Fei, LIU Dayou, XUE Wanxin. Discretizing continuous variables of Bayesia n network s based on genetic algorithms[J]. Chinese Journal of Computers, 2002, 25(8): 7 94-800.
[20]MURPHY S L, AHA D W. UCI repository of machine learning databases[ EB/OL]. http: //www. ics. uci. edu/~mlearn/MLRepository, 2005-09-10
Similar References:

Memo

-

Last Update: 2009-05-09

Copyright © CAAI Transactions on Intelligent Systems