[1]YANG Jing-yu,ZHENG Yu-jie.Discriminant dimensionality reduction based on QR decomposition and its application in face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(6):48-53.
Copy

Discriminant dimensionality reduction based on QR  decomposition and its application in face recognition

References:
[1] FUKUNAGA K. Introduction to statistical pattern recognition[M]. New York : Academic Press, 1990.
[2]DUDA R O,HART P E,STORK D G. Pattern classification[M]. 2nd ed. New Yo rk:John Wiley & Sons, 2001.
[3]BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J. Eigenfaces vs fisherfaces: recogn it ion using class specific linear projection[J]. IEEE Trans Pattern Analysis an d Machine Intelligence, 1997, 19(7):711-720.
[4]COMON P. Independent component analysis—a new concept[J].Signal Process ing, 1994, 36(3):287-314.
[5]BARTLETT M S, MOVELLAN J R, SEJNOWSKI T J. Face recognition by independent c omponent analysis[J]. IEEE Transaction on Neural Network, 2002, 13(6):1450-146 4.
[6]HYVARINEN A. Fast and robust fixedpoint algorithm for independent compon ent analysis[J]. IEEE Transaction on Neural Network, 1999, 10(3):626-634.
[7]YANG Jian, ZHANG David, YANG Jingyu. Is ICA significantly better than PCA for face recognition[A]. ICCV 2005[C].[S.l.],2005.
[8]SCHOLKOPF B,SMOLA A,MULLER K R, et al. Nonlinear component analysis as a k ernel eigenvalue problem[J]. Neural Computation. 1998, 10(5):1299-1319.
[9]SCHOLKOPF B,MIKA S,BURGES C. Input space vs feature space in kernelbase d methods[J]. IEEE Trans on Neural Networks, 1999, 10(5):1000-1017.
[10]SMOLA A J, MIKA S,SCHOLKOPF B, et al. Regularized principal man ifolds[J]. Journal of Machine Learning Research, 2001, 1(3):179-209.[11]STANFORD D C,RAGTERY A E. Fingding curvilinear features in spatial point pa tterns: principal curve clustering with noise[J]. IEEE Trans on Pattern Analy sis and Machine Intelligence, 2000, 22(6):601-609. [12]BENGIO Y,PAIEMENT J F,VINCENT P. Out of sample extensions for LLE, isomap , MDS, eigenmaps, and spectral clustering[A]. Neural Information Processing Syst ems 16 (NIPS’2003)[C].[S.l.],2003.【13]ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290:2323-2326.
[14]HE X,YAN S,HU Y, et al. Face recognition using Laplacian faces[J]. IEEE Trans Pattern and Machine Intell, 2005, 27(3):328-340.
[15]YANG J,YU H,KUNZ W. An Efficient LDA algorithm for face recognition[A]. Int ernational Conference on Automation, Robotics, and Computer Vision (ICARCV’2000) [C]. Singapore, 2000.
[16]CHEN L F,LIAO Y M,LIN J C, et al.A new LDAbased face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10):1713-1726.
[17]FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936(7):178-188.
[18]WILKS S S.Mathematical statistics[M]. New York: Wiley,1962.
[19]DUDA R,HART P.Pattern classification and scene analysis[M]. New York: W iley,1973.
[20]YE J P,LI Q. A twostage linear discriminant analysis via QRdecomposit ion[J]. IEEE Trans Pattern Anal Machine Intell, 2005, 2(6):929-941.
[21]GOLUB G H,VAN LOAN C F.Matrix computations[M]. 3rd ed. Baltimore: The Johns Hopkins Univ Press, 1996.
Similar References:

Memo

-

Last Update: 2009-05-08

Copyright © CAAI Transactions on Intelligent Systems