[1]张雄涛,陈天宇,赵康,等.基于多教师自适应知识蒸馏的TSK模糊分类器[J].智能系统学报,2025,20(5):1136-1147.[doi:10.11992/tis.202410028]
 ZHANG Xiongtao,CHEN Tianyu,ZHAO Kang,et al.TSK fuzzy classifier based on multi-teacher adaptive knowledge distillation[J].CAAI Transactions on Intelligent Systems,2025,20(5):1136-1147.[doi:10.11992/tis.202410028]
点击复制

基于多教师自适应知识蒸馏的TSK模糊分类器

参考文献/References:
[1] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31.
SU Li, SUN Yuxin, YUAN Shouzheng. A survey of instance segmentation research based on deep learning[J]. CAAI transactions on intelligent systems, 2022, 17(1): 16-31.
[2] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
[3] 赵壮壮, 王骏, 潘祥, 等. 任务间共享和特有结构分解的多任务TSK模糊系统建模[J]. 智能系统学报, 2021, 16(4): 622-629.
ZHAO Zhuangzhuang, WANG Jun, PAN Xiang, et al. Multi-task TSK fuzzy system modeling based on inter-task common and special structure decomposition[J]. CAAI transactions on intelligent systems, 2021, 16(4): 622-629.
[4] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
HUANG Zhenhua, YANG Shunzhi, LIN Wei, et al. Knowledge distillation: a survey[J]. Chinese journal of computers, 2022, 45(3): 624-653.
[5] JIANG Yunliang, WENG Jiangwei, ZHANG Xiongtao, et al. A CNN-based born-again TSK fuzzy classifier integrating soft label information and knowledge distillation[J]. IEEE transactions on fuzzy systems, 2023, 31(6): 1843-1854.
[6] JúNIOR J S S, MENDES J, SOUZA F, et al. Distilling complex knowledge into explainable T–S fuzzy systems[J]. IEEE transactions on fuzzy systems, 2025, 33(3): 1037-1048.
[7] GU Xiangming, CHENG Xiang. Distilling a deep neural network into a Takagi-Sugeno-Kang fuzzy inference system[EB/OL]. (2020-10-10)[2024-10-22]. https://arxiv.org/abs/2010.04974v1.
[8] ZHANG Xiongtao, YIN Zezong, JIANG Yunliang, et al. Fuzzy knowledge distillation from high-order TSK to low-order TSK[EB/OL]. (2023-02-16)[2024-10-22]. https://arxiv.org/abs/2302.08038v1.
[9] ERDEM D, KUMBASAR T. Enhancing the learning of interval type-2 fuzzy classifiers with knowledge distillation[C]//2021 IEEE International Conference on Fuzzy Systems. Luxembourg: IEEE, 2021: 1-6.
[10] YOU Shan, XU Chang, XU Chao, et al. Learning from multiple teacher networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 1285-1294.
[11] WU M C, CHIU C T, WU K H. Multi-teacher knowledge distillation for compressed video action recognition on deep neural networks[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019: 2202-2206.
[12] PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE transactions on fuzzy systems, 2005, 13(4): 517-530.
[13] VENKATACHALAM K, REDDY V P, AMUDHAN M, et al. An implementation of K-means clustering for efficient image segmentation[C]//2021 10th IEEE International Conference on Communication Systems and Network Technologies. Bhopal: IEEE, 2021: 224-229.
[14] ZHOU Ta, CHUNG F L, WANG Shitong. Deep TSK fuzzy classifier with stacked generalization and triplely concise interpretability guarantee for large data[J]. IEEE transactions on fuzzy systems, 2017, 25(5): 1207-1221.
[15] ALBAWI S, ABED MOHAMMED T, AL-ZAWI S. Understanding of a convolutional neural network[C]//2017 International Conference on Engineering and Technology. Antalya: IEEE, 2017: 1-6.
[16] QIN Bin, NOJIMA Y, ISHIBUCHI H, et al. Realizing deep high-order TSK fuzzy classifier by ensembling interpretable zero-order TSK fuzzy subclassifiers[J]. IEEE transactions on fuzzy systems, 2021, 29(11): 3441-3455.
[17] XUE Guangdong, WANG Jian, ZHANG Bingjie, et al. Double groups of gates based Takagi-Sugeno-Kang (DG-TSK) fuzzy system for simultaneous feature selection and rule extraction[J]. Fuzzy sets and systems, 2023, 469: 108627.
[18] CUI Yuqi, XU Yifan, PENG Ruimin, et al. Layer normalization for TSK fuzzy system optimization in regression problems[J]. IEEE transactions on fuzzy systems, 2023, 31(1): 254-264.
[19] 刘万军, 姜岚, 曲海成, 等. 融合CNN与Transformer的MRI脑肿瘤图像分割[J]. 智能系统学报, 2024, 19(4): 1007-1015.
LIU Wanjun, JIANG Lan, QU Haicheng, et al. MRI brain tumor image segmentation by fusing CNN and Transformer[J]. CAAI transactions on intelligent systems, 2024, 19(4): 1007-1015.
[20] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[22] WANG Wei, LI Yutao, ZOU Ting, et al. A novel image classification approach via dense-MobileNet models[J]. Mobile information systems, 2020, 2020(1): 7602384.
[23] TAN Mingxing, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning. California: PMLR, 2019: 6105-6114.
[24] 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773.
ZHAO Wenzhu, YUAN Guan, ZHANG Yanmei, et al. Multi-view fused spatial-temporal dynamic GCN for urban traffic flow prediction[J]. Journal of software, 2024, 35(4): 1751-1773.
[25] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE transactions on intelligent transportation systems, 2020, 21(9): 3848-3858.
[26] ABU-EL-HAIJA S, KAPOOR A, PEROZZI B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification[C]//Uncertainty in Artificial Intelligence. Tel Aviv: PMLR, 2020: 841-851.
[27] SUBAKAN C, RAVANELLI M, CORNELL S, et al. Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Toronto: IEEE, 2021: 21-25.
[28] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
REN Huan, WANG Xuguang. Review of attention mechanism[J]. Journal of computer applications, 2021, 41(S1): 1-6.
[29] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
[30] YANG Zhilin, DAI Zihang, YANG Yiming, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 32nd Conference on Neural Information Processing Systems. Vancouver: NeurIPS, 2018: 5754-5764.
[31] HAUPT C E, MARKS M. AI-generated medical advice-GPT and beyond[J]. JAMA, 2023, 329(16): 1349-1350.
[32] CUI Kaiwen, YU Yingchen, ZHAN Fangneng, et al. KD-DLGAN: data limited image generation via knowledge distillation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 3872-3882.
[33] GUO Ziyao, YAN Haonan, LI Hui, et al. Class attention transfer based knowledge distillation[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11868-11877.
[34] GOU Jianping, XIONG Xiangshuo, YU Baosheng, et al. Multi-target knowledge distillation via student self-reflection[J]. International journal of computer vision, 2023, 131(7): 1857-1874.
[35] ZHANG Pu, SHANG Changjing, SHEN Qiang. Fuzzy rule interpolation with $K$-neighbors for TSK models[J]. IEEE transactions on fuzzy systems, 2022, 30(10): 4031-4043.
[36] TIAN Xiaobin, DENG Zhaohong, YING Wenhao, et al. Deep multi-view feature learning for EEG-based epileptic seizure detection[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(10): 1962-1972.
相似文献/References:
[1]张欣培,周尧,章毅.用于胎儿超声切面识别的知识蒸馏方法[J].智能系统学报,2022,17(1):181.[doi:10.11992/tis.202105007]
 ZHANG Xinpei,ZHOU Yao,ZHANG Yi.Knowledge distillation method for fetal ultrasound section identification[J].CAAI Transactions on Intelligent Systems,2022,17():181.[doi:10.11992/tis.202105007]
[2]张静宇,续欣莹,谢刚,等.基于弹性权重巩固与知识蒸馏的垃圾持续分类[J].智能系统学报,2023,18(4):878.[doi:10.11992/tis.202211023]
 ZHANG Jingyu,XU Xinying,XIE Gang,et al.Continuous classification of garbage based on the elastic weightconsolidation and knowledge distillation[J].CAAI Transactions on Intelligent Systems,2023,18():878.[doi:10.11992/tis.202211023]
[3]宁欣,赵文尧,宗易昕,等.神经网络压缩联合优化方法的研究综述[J].智能系统学报,2024,19(1):36.[doi:10.11992/tis.202306042]
 NING Xin,ZHAO Wenyao,ZONG Yixin,et al.An overview of the joint optimization method for neural network compression[J].CAAI Transactions on Intelligent Systems,2024,19():36.[doi:10.11992/tis.202306042]
[4]吴瑞林,葛泉波,刘华平.基于YOLOX的类增量印刷电路板缺陷检测方法[J].智能系统学报,2024,19(4):1061.[doi:10.11992/tis.202309044]
 WU Ruilin,GE Quanbo,LIU Huaping.Class-incremental printed circuit board defect detection method based on YOLOX[J].CAAI Transactions on Intelligent Systems,2024,19():1061.[doi:10.11992/tis.202309044]
[5]林孙旗,徐家梦,郑瑜杰,等.面向掌纹掌静脉识别网络轻量化的非对称双模态融合方法[J].智能系统学报,2024,19(5):1190.[doi:10.11992/tis.202212031]
 LIN Sunqi,XU Jiameng,ZHENG Yujie,et al.An asymmetric bimodal fusion method for lightweight palm print and palm vein recognition network[J].CAAI Transactions on Intelligent Systems,2024,19():1190.[doi:10.11992/tis.202212031]
[6]顿家乐,王骏,彭汉琛,等.面向自闭症辅助诊断的知识蒸馏混合域适应方法[J].智能系统学报,2025,20(1):81.[doi:10.11992/tis.202403030]
 DUN Jiale,WANG Jun,PENG Hanchen,et al.Blended domain adaptation for computer-aided diagnosis of autism through knowledge distillation[J].CAAI Transactions on Intelligent Systems,2025,20():81.[doi:10.11992/tis.202403030]
[7]蒋云良,印泽宗,张雄涛,等.高阶Takagi-Sugeno-Kang模糊知识蒸馏分类器及其在脑电信号分类中的应用[J].智能系统学报,2024,19(6):1419.[doi:10.11992/tis.202307029]
 JIANG Yunliang,YIN Zezong,ZHANG Xiongtao,et al.TSK fuzzy distillation classifier with negative Euclidean probability and High-order fuzzy dark knowledge transfer and its application on EEG signals classification[J].CAAI Transactions on Intelligent Systems,2024,19():1419.[doi:10.11992/tis.202307029]

备注/Memo

收稿日期:2024-10-22。
基金项目:国家自然科学基金项目(62376094, U22A201856).
作者简介:张雄涛,副教授,博士,主要研究方向为人工智能与模式识别、机器学习。E-mail:1047897965@qq.com。;陈天宇,硕士研究生,主要研究方向为模糊系统、深度学习。E-mail:2529935825@qq.com。;申情,教授,博士,主要研究方向为智能信息处理、智慧交通。E-mail:sq@zjhu.edu.cn。
通讯作者:申情. E-mail:sq@zjhu.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com