[1]顿家乐,王骏,彭汉琛,等.面向自闭症辅助诊断的知识蒸馏混合域适应方法[J].智能系统学报,2025,20(1):81-90.[doi:10.11992/tis.202403030]
 DUN Jiale,WANG Jun,PENG Hanchen,et al.Blended domain adaptation for computer-aided diagnosis of autism through knowledge distillation[J].CAAI Transactions on Intelligent Systems,2025,20(1):81-90.[doi:10.11992/tis.202403030]
点击复制

面向自闭症辅助诊断的知识蒸馏混合域适应方法

参考文献/References:
[1] LORD C, ELSABBAGH M, BAIRD G, et al. Autism spectrum disorder[J]. Lancet, 2018, 392(10146): 508-520.
[2] HEINSFELD A S, FRANCO A R, CRADDOCK R C, et al. Identification of autism spectrum disorder using deep learning and the ABIDE dataset[J]. NeuroImage: clinical, 2018, 17: 16-23.
[3] LIU Xingdan, WU Jiacheng, LI Wenqi, et al. Domain adaptation via low rank and class discriminative representation for autism spectrum disorder identification: a multi-site fMRI study[J]. IEEE transactions on neural systems and rehabilitation engineering, 2023: 3233656.
[4] WANG Mingliang, ZHANG Daoqiang, HUANG Jiashuang, et al. Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation[J]. IEEE transactions on medical imaging, 2020, 39(3): 644-655.
[5] ABRAHAM A, MILHAM M P, DI MARTINO A, et al. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example[J]. NeuroImage, 2017, 147: 736-745.
[6] 蔡鸿顺, 张琼敏, 龙颖. 面向阿尔茨海默症辅助诊断的多尺度域适应网络[J]. 智能系统学报, 2023, 18(5): 1090-1098.
CAI Hongshun, ZHANG Qiongmin, LONG Ying. Multiscale domain adaptation network for the auxiliary diagnosis of Alzheimer’s disease[J]. CAAI transactions on intelligent systems, 2023, 18(5): 1090-1098.
[7] 梁艳, 温兴, 潘家辉. 融合全局与局部特征的跨数据集表情识别方法[J]. 智能系统学报, 2023, 18(6): 1205-1212.
LIANG Yan, WEN Xing, PAN Jiahui. Cross-dataset facial expression recognition method fusing global and local features[J]. CAAI transactions on intelligent systems, 2023, 18(6): 1205-1212.
[8] MANSOUR Y, MOHRI M, ROSTAMIZADEH A. Domain adaptation: learning bounds and algorithms[EB/OL]. (2023-11-30)[2024-03-13]. https://arxiv.org/abs/0902.3430v3.
[9] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine learning, 2010, 79(1): 151-175.
[10] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille: ACM, 2015: 97-105.
[11] DING Jie, WANG Li, YU Lei, et al. Low-rank domain adaptive method with inter-class difference constraint for multi-site autism spectrum disorder identification[C]//2022 7th International Conference on Computational Intelligence and Applications. Nanjing: IEEE, 2022: 237-242.
[12] CHEN Ziliang, ZHUANG Jingyu, LIANG Xiaodan, et al. Blending-target domain adaptation by adversarial meta-adaptation networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2243-2252.
[13] LIU Ziwei, MIAO Zhongqi, PAN Xingang, et al. Open compound domain adaptation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 12406-12415.
[14] ZHENG J, WU Wenzhao, FU Haohuan, et al. Unsupervised mixed multi-target domain adaptation for remote sensing images classification[C]//2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 1381-1384.
[15] XU Pengcheng, WANG Boyu, LING C. Class overwhelms: mutual conditional blended-target domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2023, 37(3): 3036-3044.
[16] ROY S, KRIVOSHEEV E, ZHONG Zhun, et al. Curriculum graph co-teaching for multi-target domain adaptation[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 5347-5356.
[17] PARISOT S, KTENA S I, FERRANTE E, et al. Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease[J]. Medical image analysis, 2018, 48: 117-130.
[18] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-05-09)[2024-03-13]. https://arxiv.org/abs/1503.02531v1.
[19] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
HUANG Zhenhua, YANG Shunzhi, LIN Wei, et al. Knowledge distillation: a survey[J]. Chinese journal of computers, 2022, 45(3): 624-653.
[20] CHEN Defang, MEI Jianping, WANG Can, et al. Online knowledge distillation with diverse peers[C]//Proceedings of the AAAI conference on artificial intelligence. New York: AAAI, 2020, 34(4): 3430-3437.
[21] WILSON G, COOK D J. A survey of unsupervised deep domain adaptation[J]. ACM transactions on intelligent systems and technology, 2020, 11(5): 1-46.
[22] LUO Yadan, WANG Zijian, HUANG Zi, et al. Progressive graph learning for open-set domain adaptation[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 6468-6478.
[23] LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM, 2018: 1647-1657.
[24] DI MARTINO A, YAN C G, LI Q, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism[J]. Molecular psychiatry, 2014, 19(6): 659-667.
[25] CAMERON C, SHARAD S, BRIAN C, et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC)[J]. Frontiers in neuroinformatics, 2013, 7: 42.
[26] RYU M, LEE G, LEE K. Knowledge distillation for BERT unsupervised domain adaptation[J]. Knowledge and information systems, 2022, 64(11): 3113-3128.
[27] MURPHY K, SCH?LKOPF B, GANIN Y, et al. Domain-adversarial training of neural networks[J]. Journal of machine learning research, 2016, 17(1): 2096-2030.
[28] LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: ACM, 2017: 2208-2217.
[29] ZELLINGER W, MOSER B A, GRUBINGER T, et al. Robust unsupervised domain adaptation for neural networks via moment alignment[J]. Information sciences, 2019, 483: 174-191.
[30] NGUYEN-MEIDINE L T, BELAL A, KIRAN M, et al. Unsupervised multi-target domain adaptation through knowledge distillation[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1338-1346.
相似文献/References:
[1]许敏,俞林.一种新颖的领域自适应概率密度估计器[J].智能系统学报,2015,10(2):221.[doi:10.3969/j.issn.1673-4785.201312041]
 XU Min,YU Lin.A probability density estimator for domain adaptation[J].CAAI Transactions on Intelligent Systems,2015,10():221.[doi:10.3969/j.issn.1673-4785.201312041]
[2]梁艳,温兴,潘家辉.融合全局与局部特征的跨数据集表情识别方法[J].智能系统学报,2023,18(6):1205.[doi:10.11992/tis.202212030]
 LIANG Yan,WEN Xing,PAN Jiahui.Cross-dataset facial expression recognition method fusing global and local features[J].CAAI Transactions on Intelligent Systems,2023,18():1205.[doi:10.11992/tis.202212030]

备注/Memo

收稿日期:2024-3-18。
基金项目:国家自然科学基金项目(62272289).
作者简介:顿家乐,硕士研究生,主要研究方向为深度学习、计算机视觉、迁移学习。E-mail: dunjiale1997@163.com。;王骏,副教授,博士。中国计算机学会高级会员,IEEE高级会员,中国人工智能学会粒计算与知识发现专业委员会委员、机器学习专业委员会委员,MICS online委员。主要研究方向为机器学习、医学影像智能计算。发表学术论文70余篇。E-mail:wangjun_ shu@shu.edu.cn。;彭汉琛,硕士研究生,主要研究方向为深度学习、迁移学习、图像处理。E-mail: phcking0219@163.com。
通讯作者:王骏. E-mail:wangjun_shu@shu.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com