[1]田顺钰,欧阳勇平,魏长赟.融合专家纠偏策略的移动机器人动态环境避障方法[J].智能系统学报,2024,19(6):1492-1502.[doi:10.11992/tis.202304056]
TIAN Shunyu,OUYANG Yongping,WEI Changyun.Collision avoidance approach with heuristic correction policy for mobile robot navigation in dynamic environments[J].CAAI Transactions on Intelligent Systems,2024,19(6):1492-1502.[doi:10.11992/tis.202304056]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1492-1502
栏目:
学术论文—智能系统
出版日期:
2024-12-05
- Title:
-
Collision avoidance approach with heuristic correction policy for mobile robot navigation in dynamic environments
- 作者:
-
田顺钰, 欧阳勇平, 魏长赟
-
河海大学 机电工程学院, 江苏 常州 213251
- Author(s):
-
TIAN Shunyu, OUYANG Yongping, WEI Changyun
-
College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213251, China
-
- 关键词:
-
移动机器人; 深度强化学习; 机器人导航; 非结构环境; 动态避障; 专家纠偏策略; 自学习; 端到端
- Keywords:
-
mobile robots; deep reinforcement learning; robot navigation; non-structural environment; dynamic collision avoidance; heuristic correction policy; self-learning; end-to-end
- 分类号:
-
TP273+.2
- DOI:
-
10.11992/tis.202304056
- 摘要:
-
基于深度强化学习(deep reinforcement learning,DRL)的移动机器人无地图导航技术备受机器人和相关研究领域的关注,在非结构化环境中避免与动态障碍物的碰撞是需要解决的重要难题。为此提出一种融合专家纠偏策略的机器人自主导航DRL方法,该算法将24线激光雷达传感器信息、目标位置信息和机器人速度信息作为深度强化学习的输入,并输出控制机器人的动作指令。实验结果表明,相较于其他算法,该算法可以在保证安全的前提下以更短的距离和时间到达目标。同时将所提出的方法部署在真实机器人上,验证和评估算法的性能,为机器人动态环境避障导航提供一种技术参考。
- Abstract:
-
Mapless navigation for mobile robots based on deep reinforcement learning (DRL) has received increasing attention from robotics and related research fields. The major challenge in mapless navigation is collision avoidance of dynamic obstacles in unstructured environments. Therefore, this paper proposes a DRL algorithm that incorporates a heuristic correction policy for robot autonomous navigation. The algorithm utilizes information from a 24-line laser radar sensor, target location, and robot velocity as inputs for DRL to generate action commands that regulate the robot’s motion. Experimental results demonstrate that, compared to other algorithms, the proposed approach can reach the target more efficiently in terms of distance and time while ensuring safety. Moreover, the algorithm is implemented in a real robot to verify and evaluate its performance, providing a technical reference for collision avoidance during its navigation in dynamic environments.
更新日期/Last Update:
2024-11-05