[1]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报编辑部,2016,11(2):249-256.[doi:10.11992/tis.201507064]
LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11(2):249-256.[doi:10.11992/tis.201507064]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第2期
页码:
249-256
栏目:
学术论文—人工智能基础
出版日期:
2016-04-25
- Title:
-
Dynamic time warping based on piecewise aggregate approximation and data derivatives
- 作者:
-
李海林, 梁叶
-
华侨大学 信息管理系, 福建 泉州 362021
- Author(s):
-
LI Hailin, LIANG Ye
-
Department of Information Management, Huaqiao University, Quanzhou 362021, China
-
- 关键词:
-
动态时间弯曲; 时间序列; 分段聚合近似; 数值导数; 相似性度量; 分类; 数据降维; 特征表示
- Keywords:
-
dynamic time warping; time series; piecewise aggregate approximation; numerical derivative; similarity measure; classification; dimensionality reduction; feature representation
- 分类号:
-
TP301
- DOI:
-
10.11992/tis.201507064
- 摘要:
-
针对动态弯曲方法对时间序列数据相似性度量的质量和效率的局限性,本文提出一种基于分段聚合近似和数值导数的动态时间弯曲方法。该方法通过分段聚合近似将时间序列数据进行有效地降维,再结合数值导数对降维后的特征序列构建新特征序列,并且设计符合该特征序列相似性度量方法。实验结果分析表明,与传统动态弯曲方法相比,新方法具有较好的度量质量,能在时间序列数据挖掘中得到较好的分类效果,且在低维空间具有较高的分类效率,具有一定的优越性。
- Abstract:
-
Dynamic time warping (DTW) is often used to measure the similarity of time series data; however, it has efficiency and quality limitations. In this study, a novel DTW method combining piecewise aggregate approximation (PAA) and derivatives is proposed to measure the similarity of time series. The dimensionality of the time series data was effectively reduced by PAA, and the feature sequence was transformed into new sequences by combining the numerical derivatives after the dimensionality reduction. Furthermore, the DTW design corresponded to the similarity measurement method of the feature sequence. The experimental results demonstrate that the proposed method is superior because it has better measurement quality, obtains a better classification effect in time series data mining, and has high efficiency in lower dimensional spaces.
备注/Memo
收稿日期:2015-7-24;改回日期:。
基金项目:国家自然科学基金项目(61300139);福建省中青年教育科研基金项目(JAS14024);华侨大学中青年教师科研提升计划项目(ZQN-PY220).
作者简介:李海林,男,1982年生,副教授,博士,主要研究方向为数据挖掘与决策支持,主持国家自然科学基金、省部级基金多项,发表学术论文30余篇,其中被SCI检索11篇,EI检索10余篇;梁叶,女,1992年生,硕士研究生,主要研究方向为数据挖掘与金融数据分析。
通讯作者:李海林.E-mail:hailin@hqu.edu.cn.
更新日期/Last Update:
1900-01-01