[1]王卫苹,刁亚鹏.融合金字塔和多尺度注意力的多曝光图像融合优化算法[J].智能系统学报,2025,20(4):916-927.[doi:10.11992/tis.202406032]
WANG Weiping,DIAO Yapeng.Optimized multi-exposure image fusion algorithm integrating pyramid and multi-scale attention[J].CAAI Transactions on Intelligent Systems,2025,20(4):916-927.[doi:10.11992/tis.202406032]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
916-927
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Optimized multi-exposure image fusion algorithm integrating pyramid and multi-scale attention
- 作者:
-
王卫苹, 刁亚鹏
-
北京科技大学 计算机与通信工程学院, 北京 100083
- Author(s):
-
WANG Weiping, DIAO Yapeng
-
School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
-
- 关键词:
-
图像融合; 注意力机制; 金字塔网络; 多曝光; 细节提取; 色彩校正; 多尺度; 深度学习
- Keywords:
-
image fusion; attention mechanism; pyramid network; multi-exposure; detail extraction; color correction; multi-scale; deep learning
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202406032
- 文献标志码:
-
2025-2-21
- 摘要:
-
为解决复杂光照条件下真实场景中导致的图像噪声、模糊和细节丢失问题,本文提出一种多曝光图像融合技术DPEPA-MEF(deep pyramid exposure pyramid attention-multi-exposure fusion)。该方法通过有效结合不同曝光水平的图像,解决高对比度、低光照以及色彩和亮度平衡等问题。该方法由3个模块组成,对DPE(deep pyramid exposure)进行改进。第1个模块专注于内容细节提取,第2个模块负责色彩映射和校正,第3个模块利用多尺度特征金字塔进行图像恢复。实验结果表明,在不同的光照条件和动态场景下,DPEPA-MEF能够更有效地融合多张曝光图像,生成的图像在细节保留、色彩还原和对比度等方面表现出色。通过定量评估指标和主观视觉评估,DPEPA-MEF均显示出显著的优势,证明了该方法在实际应用中的巨大潜力和优越性。
- Abstract:
-
The article introduces a multi-exposure image fusion technique named DPEPA-MEF (deep pyramid exposure pyramid attention-multi-exposure fusion). This technique aims to address image noise, blur, and detail loss caused by complex lighting conditions in real scenes. The DPEPA-MEF method effectively combines images with varying exposure levels to solve issues such as high contrast, low light, and color and brightness balance. It consists of three modules, which improve upon deep pyramid exposure (DPE). The first module focuses on content detail extraction, the second on color mapping and correction, and the third on image recovery using a multi-scale feature pyramid. Experimental results indicate that under different lighting conditions and dynamic scenes, DPEPA-MEF can more effectively fuse multiple exposure images. The resulting images exhibit excellent detail preservation, color reproduction, and contrast. Both quantitative evaluation metrics and subjective visual assessments demonstrate the significant advantages of DPEPA-MEF, confirming its great potential and superiority in practical applications.
备注/Memo
收稿日期:2024-6-21。
基金项目:工业和信息化部高质量发展专项(TC220A04A-182); 国 家自然科学基金项目(62271045);国家国际科技合作重点项目 (2022YFE0112300);北京科技大学青年教师学科交叉研究项目(FRF-IDRY-23-027);CCF-绿盟科技“鲲鹏”科研基金项目(CCF-NSFOCUS 2024017).
作者简介:王卫苹,教授,主要研究方向为类脑计算、忆阻神经网络、联想记忆感知模拟、复杂网络、网络安全和图像加密。主持和参与国家自然科学基金项目、国际联合基金重点项目等多项,获得中国通信学会最佳论文奖、河南省科技进步二等奖等荣誉。发表学术论文90余篇,拥有软著与专利20余项。E-mail:weipingwangjt@ustb.edu.cn。;刁亚鹏,硕士研究生,主要研究方向为类脑计算、脑机接口和图像处理领域。E-mail:ypdiao@xs.ustb.edu.cn。
通讯作者:王卫苹. E-mail:weipingwangjt@ustb.edu.cn
更新日期/Last Update:
1900-01-01