[1]王德文,胡旺盛,张润磊,等.高低频特征融合的低照度图像增强方法[J].智能系统学报,2025,20(3):641-648.[doi:10.11992/tis.202405026]
 WANG Dewen,HU Wangsheng,ZHANG Runlei,et al.Low light image enhancement based on high and low frequency feature fusion[J].CAAI Transactions on Intelligent Systems,2025,20(3):641-648.[doi:10.11992/tis.202405026]
点击复制

高低频特征融合的低照度图像增强方法

参考文献/References:
[1] 许皓, 钱宇华, 王克琪, 等. 高低频通道特征交叉融合的低光人脸检测算法[J]. 智能系统学报, 2024, 19(2): 472-481.
XU Hao, QIAN Yuhua, WANG Keqi, et al. Low-light face detection method based on the cross fusion of high-and low-frequency channel features[J]. CAAI transactions on intelligent systems, 2024, 19(2): 472-481.
[2] 马龙, 马腾宇, 刘日升. 低光照图像增强算法综述[J]. 中国图象图形学报, 2022, 27(5): 1392-1409.
MA Long, MA Tengyu, LIU Risheng. The review of low-light image enhancement[J]. Journal of image and graphics, 2022, 27(5): 1392-1409.
[3] COLTUC Dinu, BOLON Philippe, CHASSERY J M. Exact histogram specification[J]. IEEE transactions on image processing, 2006, 15(5): 1143-1152.
[4] ARICI T, DIKBAS S, ALTUNBASAK Y. A histogram modification framework and its application for image contrast enhancement[J]. IEEE transactions on image processing, 2009, 18(9): 1921-1935.
[5] 杨先凤, 蒋欣岑, 杜晶晶. 融合伽马变换及分数阶的低照度图像增强算法[J]. 计算机工程与设计, 2021, 42(3): 762-769.
YANG Xianfeng, JIANG Xincen, DU Jingjing. Low illumination image enhancement algorithm based on gamma transformation and fractional order[J]. Computer engineering and design, 2021, 42(3): 762-769.
[6] FU Xueyang, ZENG Delu, HUANG Yue, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2782-2790.
[7] 涂清华, 戴声奎. 基于域滤波的自适应Retinex图像增强[J]. 计算机工程与科学, 2016, 38(9): 1830-1835.
XU Qinghua, DAI Shengkui. Adaptive Retinex image enhancement based on domain transform filter[J]. Computer engineering and science, 2016, 38(9): 1830-1835.
[8] 欧嘉敏, 胡晓, 杨佳信. 改进Retinex-Net的低光照图像增强算法[J]. 模式识别与人工智能, 2021, 34(1): 77-86.
OU Jiamin, HU Xiao, YANG Jiaxin. Low-light image enhancement algorithm based on improved Retinex-Net[J]. Pattern recognition and artificial intelligence, 2021, 34(1): 77-86.
[9] GUO Xiaojie, LI Yu, LING Haibin. Lime: low-light image enhancement via illumination map estimation[J]. IEEE transactions on image processing, 2017, 26(2): 982-993.
[10] 赵明华, 汶怡春, 都双丽, 等. 基于照度与场景纹理注意力图的低光图像增强[J]. 中国图象图形学报, 2024, 29(4): 862-874.
ZHAO Minghua, WEN Yichun, DU Shuangli, et al. Low-light image enhancement algorithm based on illumination and scene texture attention map[J]. Journal of image and graphics, 2024, 29(4): 862-876.
[11] GUO Chunle, LI Chongyi, GUO Jichang, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1777-1786.
[12] 江泽涛, 覃露露, 秦嘉奇, 等. 一种基于MDARNet的低照度图像增强方法[J]. 软件学报, 2021, 32(12): 3977-3991.
JIANG Zetao, QIN Lulu, QIN Jiaqi, et al. Low-light image enhancement method based on MDARNet[J]. Journal of software, 2021, 32(12): 3977-3991.
[13] 谌贵辉, 林瑾瑜, 李跃华, 等. 注意力机制下的多阶段低照度图像增强网络[J]. 计算机应用, 2023, 43(2): 552-559.
CHEN Guihui, LIN Jinyu, LI Yuehua, et al. Multi-stage low-illuminance image enhancement network based on attention mechanism[J]. Journal of computer application, 2023, 43(2): 552-559.
[14] YANG Wenhan, WANG Shiqi, FANG Yuming, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3060-3069.
[15] XU Ke, YANG Xin, YIN Baocai, et al. Learning to restore low-light images via decomposition and enhancement[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2278-2287.
[16] LAMBA M, MITRA K. Restoring extremely dark images in real time[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2021: 3486-3496.
[17] ATOUM Y, YE Mao, REN Liu, et al. Color-wise attention network for low-light image enhancement[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2130-2139.
[18] ZHU Minfeng, PAN Pingbo, CHEN Wei, et al. EEMEFN: Low-light image enhancement via edge-enhanced multi-exposure fusion network[C]//AAAI conference on artificial intelligence. New York: AAAI, 2020: 13106-13113.
[19] 杨勇, 刘惠义. 极端低光情况下的图像增强方法[J]. 图学学报, 2020, 41(4): 520-528.
YANG Yong, LIU Huiyi. The method of image enhancement under extremely low-light conditions[J]. Journal of graphics, 2020, 41(4): 520-528.
[20] WANG Y, HUANG H, XU Q, et al. Practical deep raw image denoising on mobile devices[C]//2020 European Conference Computer Vision. Glasgow: ECCV, 2020: 12351.
[21] ZAMIR S W, ARORA A, KHAN S. Multi-stage progressive image restoration[C]// 2021 IEEE Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14816-14826.
[22] ZOU Yunhao, FU Ying. Estimating fine-grained noise model via contrastive learning[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12672-12681.
[23] CHEN Chen, CHEN Qifeng, XU Jia, et al. Learning to see in the dark. [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3291-3300.
[24] WANG Y, ZHU X, ZHAO Y, et al. Enhancement of low-light image based on wavelet U-Net[J]. Journal of physics, 2019, 1345(2): 022030.
[25] MAHARJAN P, LI Li, ZHU Li, et al. Improving extreme low-light image denoising via residual learning[C]//2019 IEEE International Conference on Multimedia and Expo. Shanghai: IEEE, 2019: 916-921.
[26] LAMBA M, BALAJI A, MITRA K. Towards fast and light-weight restoration of dark images [EB/OL]. (2020-11-28) [2024-04-20]. https://doi.org/10.48550/arXiv.2011.14133.
[27] GU Shuhang, LI Yawei, VAN LUC Gool, et al. Self-guided network for fast image denoising[C]//2019 IEEE International Conference on Computer Vision. Seoul: IEEE, 2019: 2511-2520.
[28] DONG Xingbo, XU Wanyan, MIAO Zhihui. et al. Abandoning the bayer-filter to see in the dark[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 17410-17419.
[29] JIN Xin, HAN Linghao, LI Zhen, et al. DNF: decouple and feedback network for seeing in the dark[C]//2023 IEEE Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 18135-18144.
[30] REN Wenqi, LIU Sifei, MA Lin, et al. Lowlight image enhancement via a deep hybrid network[J]. IEEE transactions on image processing, 2019, 28(9): 4364-4375.
[31] ZHANG Yulun, TIAN Yapeng, KONG Yu. Residual dense network for image super-resolution[J]. IEEE transactions on image processing, 2022, 22: 1391-1405.
相似文献/References:
[1]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(6):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6():471.
[2]谌琛,李卫军,陈亮,等.一种自适应的仿生图像增强方法:LDRF算法[J].智能系统学报,2012,7(5):404.
 CHEN Chen,LI Weijun,CHEN Liang,et al.An adaptive biomimetic image processing method: LDRF algorithm[J].CAAI Transactions on Intelligent Systems,2012,7():404.
[3]曹锦纲,李金华,郑顾平.基于生成式对抗网络的道路交通模糊图像增强[J].智能系统学报,2020,15(3):491.[doi:10.11992/tis.201903041]
 CAO Jin gang,LI Jinhua,ZHENG Guping.Enhancement of blurred road-traffic images based on generative adversarial network[J].CAAI Transactions on Intelligent Systems,2020,15():491.[doi:10.11992/tis.201903041]
[4]孙美晨,孙正,候英飒.AAR-Net:用于声学异质介质光声图像重建的深度神经网络[J].智能系统学报,2024,19(2):278.[doi:10.11992/tis.202212024]
 SUN Meichen,SUN Zheng,HOU Yingsa.AAR-Net: a deep neural network for photoacoustic image reconstruction in heterogeneous acoustic media[J].CAAI Transactions on Intelligent Systems,2024,19():278.[doi:10.11992/tis.202212024]

备注/Memo

收稿日期:2024-5-28。
基金项目:国家自然科学基金项目(62371188).
作者简介:王德文,副教授,主要研究方向为人工智能与图像处理。主持或参与国家自然科学基金项目 4 项,获省科技进步奖 3 项,以第一完成人获得国家专利授权3项,发表学术论文50余篇。E-mail: wdewen@gmail.com。;胡旺盛,硕士研究生,主要研究方向为人工智能与图像处理。E-mail:912308384@qq.com。;张润磊,硕士研究生,主要研究方向为人工智能与图像处理。E-mail:1043188439@qq.com。
通讯作者:王德文. E-mail:wdewen@gmail.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com