[1]王文卿,张小乔,何霁,等.基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法[J].智能系统学报,2025,20(3):649-657.[doi:10.11992/tis.202401003]
 WANG Wenqing,ZHANG Xiaoqiao,HE Ji,et al.Pansharpening based on hybrid dual-branch convolutional and graph convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2025,20(3):649-657.[doi:10.11992/tis.202401003]
点击复制

基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法

参考文献/References:
[1] 杨勇,苏昭,黄淑英,等. 基于深度学习的像素级全色图像锐化研究综述[J]. 遥感学报, 2022, 26(12): 2411-2432.
YANG Yong, SU Zhao, HUANG Shuying, et al. Survey of deep-learning approaches for pixel-level pansharpening[J]. National remote sensing bulletin, 2022, 26(12): 2411-2432.
[2] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 029025.
ZHAO Qichang, WU Yiquan, YUAN Yubin. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta aeronautica et astronautica sinica, 2024, 45(8): 029025.
[3] LI Zhi, PENG Zhenming, CAO Siying, et al. High-resolution remote sensing change detection based on inverse correction and density peak clustering[C]// 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 3028-3031.
[4] BAI Jing, LIU Ruotong, ZHAO Haisheng, et al. Hyperspectral image classification using geometric spatial-spectral feature integration: a class incremental learning approach[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 5531215.
[5] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
HU Jianwen, WANG Zeping, HU Pei. A review of spatial-spectral remote sensing image fusion based on deep learning[J]. Remote sensing for natural resources, 2023, 35(1): 1-14.
[6] 徐佳, 关泽群, 何秀凤, 胡俊伟,等. 基于传感器光谱特性的全色与多光谱图像融合[J]. 遥感学报, 2009, 13(1): 97-102.
XU Jia, GUAN Zequn, HE Xiufeng, et al. Panchromatic and multispectral image fusion based on sensor spectral characteristics[J]. Journal of remote sensing, 2009, 13(1): 97-102.
[7] 肖亮, 刘鹏飞, 李恒. 多源空——谱遥感图像融合方法进展与挑战[J]. 中国图象图形学报, 2020, 25(5): 851-863.
XIAO Liang, LIU Pengfei, LI Heng. Advances and challenges in multi-source spatial-spectral remote sensing image fusion methods[J]. Journal of image and graphics, 2020, 25(5): 851-863.
[8] TU Teming, SU Shunchi, SHYU H C, et al. A new look at IHS-like image fusion methods[J]. Information fusion, 2001, 2(3): 177-186.
[9] KWARTENG P, CHAVEZ A. Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis[J]. Photogrammetric engineering & remote sensing, 1989, 55: 339-348.
[10] MALLAT S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE transactions on pattern analysis and machine intelligence, 1989, 11(7): 674-693.
[11] LIU Pengfei. Pansharpening with spatial hessian non-convex sparse and spectral gradient low rank priors[J]. IEEE transactions on image processing, 2023, 32: 2120-2131.
[12] ZHU Xiaoxiang, GROHNFELDT C, BAMLER R. Exploiting joint sparsity for pansharpening: the J-SparseFI algorithm[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(5): 2664-2681.
[13] LIU Pengfei, TANG Songze, HUANG Lili. Pansharpening with spatial hyper-Laplacian and spectral sparse constraints[C]// 2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur: IEEE, 2022: 3762-3765.
[14] MASI G, COZZOLINO D, VERDOLIVA L, et al. Pansharpening by convolutional neural networks[J]. Remote sensing, 2016, 8(7): 594.
[15] LIU Xiangyu, LIU Qingjie, WANG Yunhong. Remote sensing image fusion based on two-stream fusion network[J]. Information fusion, 2020, 55: 1-15.
[16] YANG Junfeng, FU Xueyang, HU Yuwen, et al. PanNet: a deep network architecture for pan-sharpening[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1753-1761.
[17] LIU Xiangyu, WANG Yunhong, LIU Qingjie. Psgan: a generative adversarial network for remote sensing image pan-sharpening[C]//2018 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 873-877.
[18] SHI Cheng, PUN C M. Superpixel-based 3D deep neural networks for hyperspectral image classification[J]. Pattern recognition, 2018, 74: 600-616.
[19] AHMAD M, KHAN A M, MAZZARA M, et al. A fast and compact 3-D CNN for hyperspectral image classification[J]. IEEE geoscience and remote sensing letters, 2020, 19: 5502205.
[20] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2024-01-01]. https://arxiv.org/abs/1609.02907v4.
[21] 侯磊, 刘金环, 于旭, 等. 图神经网络研究综述[J]. 计算机科学, 2024, 51(6): 282-298.
HOU Lei, LIU Jinhuan, YU Xu, et al. Review of graph neural networks[J]. Computer science, 2024, 51(6): 282-298.
[22] XU Boyan, YIN Hujun. Graph convolutional networks in feature space for image deblurring and super-resolution[C]//2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-8.
[23] YAN Keyu, ZHOU Man, LIU Liu, et al. When pansharpening meets graph convolution network and knowledge distillation[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 5408915.
[24] WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803.
[25] PALSSON F, SVEINSSON J R, ULFARSSON M O, et al. Quantitative quality evaluation of pansharpened imagery: consistency versus synthesis[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(3): 1247-1259.
[26] WANG Wenqing, ZHOU Zhiqiang, ZHANG Xiaoqiao, et al. DiTBN: detail injection-based two-branch network for pansharpening of remote sensing images[J]. Remote sensing, 2022, 14(23): 6120.
[27] VIVONE G, ALPARONE L, CHANUSSOT J, et al. A critical comparison among pansharpening algorithms[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(5): 2565-2586.
[28] KALLEL A. MTF-adjusted pansharpening approach based on coupled multiresolution decompositions[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(6): 3124-3145.
[29] VIVONE G. Robust band-dependent spatial-detail approaches for panchromatic sharpening[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(9): 6421-6433.
[30] ZHOU J, CIVCO D L, SILANDER J A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data[J]. International journal of remote sensing, 1998, 19(4): 743-757.
相似文献/References:
[1]李洋,焦淑红,孙新童.基于IHS和小波变换的可见光与红外图像融合[J].智能系统学报,2012,7(6):554.
 LI Yang,JIAO Shuhong,SUN Xintong.Fusion of visual and infrared images based on IHS and wavelet transforms[J].CAAI Transactions on Intelligent Systems,2012,7():554.
[2]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11():241.[doi:10.11992/tis.201509017]
[3]王建,吴锡生.基于改进的稀疏表示和PCNN的图像融合算法研究[J].智能系统学报,2019,14(5):922.[doi:10.11992/tis.201805045]
 WANG Jian,WU Xisheng.Image fusion based on the improved sparse representation and PCNN[J].CAAI Transactions on Intelligent Systems,2019,14():922.[doi:10.11992/tis.201805045]
[4]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():1073.[doi:10.11992/tis.202012010]
[5]曲海成,王宇萍,谢梦婷,等.结合亮度感知与密集卷积的红外与可见光图像融合[J].智能系统学报,2022,17(3):643.[doi:10.11992/tis.202104004]
 QU Haicheng,WANG Yuping,XIE Mengting,et al.Infrared and visible image fusion combined with brightness perception and dense convolution[J].CAAI Transactions on Intelligent Systems,2022,17():643.[doi:10.11992/tis.202104004]
[6]王瑞婷,王海燕,陈晓,等.基于混合卷积与三重注意力的高光谱图像分类网络[J].智能系统学报,2023,18(2):260.[doi:10.11992/tis.202204002]
 WANG Ruiting,WANG Haiyan,CHEN Xiao,et al.Hyperspectral image classification based on hybrid convolutional neural network with triplet attention[J].CAAI Transactions on Intelligent Systems,2023,18():260.[doi:10.11992/tis.202204002]
[7]张心祎,谭耀,邢向磊.基于物理先验的深度特征融合水下图像复原[J].智能系统学报,2023,18(6):1185.[doi:10.11992/tis.202304038]
 ZHANG Xinyi,TAN Yao,XING Xianglei.Deep feature fusion for underwater-image restoration based on physical priors[J].CAAI Transactions on Intelligent Systems,2023,18():1185.[doi:10.11992/tis.202304038]
[8]陶岩,张辉,黄志鸿,等.面向配电网典型部件的热故障精准判别方法[J].智能系统学报,2025,20(2):506.[doi:10.11992/tis.202311035]
 TAO Yan,ZHANG Hui,HUANG Zhihong,et al.Accurate identification of thermal faults for typical components of distribution networks[J].CAAI Transactions on Intelligent Systems,2025,20():506.[doi:10.11992/tis.202311035]

备注/Memo

收稿日期:2024-1-2。
基金项目:国家自然科学基金项目(62376214, 92270117);陕西省自然科学基础研究计划项目(2023- JC-YB-533).
作者简介:王文卿,副教授,主要研究方向为遥感影像处理与解译、智能信息处理、机器学习。主持国家自然科学基金项目2项,发表学术论文30余篇。E-mail:wangwenqing@xaut.edu.cn。;张小乔,硕士研究生,主要研究方向为遥感图像融合、深度学习、图像处理。E-mail:2210320138@stu.xaut.edu.cn。;刘涵,教授,主要研究方向为复杂工业过程建模与控制、机器学习、人工智能、智能信息处理。主持国家自然科学基金项目3项,发表学术论文160余篇。E-mail: liuhan@xaut.edu.cn。
通讯作者:刘涵. E-mail:liuhan@xaut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com