[1]王文卿,张小乔,何霁,等.基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法[J].智能系统学报,2025,20(3):649-657.[doi:10.11992/tis.202401003]
WANG Wenqing,ZHANG Xiaoqiao,HE Ji,et al.Pansharpening based on hybrid dual-branch convolutional and graph convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2025,20(3):649-657.[doi:10.11992/tis.202401003]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
649-657
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-05-05
- Title:
-
Pansharpening based on hybrid dual-branch convolutional and graph convolutional neural networks
- 作者:
-
王文卿1,2, 张小乔1, 何霁1, 刘涵1,2, 刘丁1,2
-
1. 西安理工大学 自动化与信息工程学院, 陕西 西安 710048;
2. 西安理工大学 陕西省复杂系统控制与智能信息处理重点实验室, 陕西 西安 710048
- Author(s):
-
WANG Wenqing1,2, ZHANG Xiaoqiao1, HE Ji1, LIU Han1,2, LIU Ding1,2
-
1. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China;
2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xi’an University of Technology, Xi’an 710048, China
-
- 关键词:
-
图像融合; 遥感; 图像处理; 深度学习; 卷积神经网络; 机器学习; 特征提取; 图像重构
- Keywords:
-
image fusion; remote sensing; image processing; deep learning; convolutional neural network; machine learning; feature extraction; image reconstruction
- 分类号:
-
TP751
- DOI:
-
10.11992/tis.202401003
- 摘要:
-
多光谱图像全色锐化是遥感影像处理与解译领域的热点问题。相较于传统全色锐化方法,基于深度学习的全色锐化方法聚焦于图像深层次特征的提取,大幅提升了融合图像的质量。本文提出一种基于混合双分支卷积神经网络和图卷积神经网络的全色锐化方法,旨在同时挖掘图像的光谱、空间与非几何结构信息,以提升融合图像空间分辨率和光谱分辨率。本方法建立在多分辨率分析融合框架的基础上,利用深度神经网络构建了特征提取、特征融合和图像重构模块。混合双分支网络模块是由2D和3D卷积神经网络构建,其中,2D卷积神经网络负责挖掘多光谱图像与全色图像的空间特征,3D卷积神经网络负责挖掘图像的光谱特征。引入了图卷积神经网络以捕捉图像图结构中节点的空间关系,从而整合非局部信息。将多光谱图像与全色图像的空间、光谱和非几何特征通过特征融合模块进行融合。将融合特征输入图像重构网络重建高质量多光谱图像。本文算法在GeoEye-1和IKONOS遥感数据上进行了实验验证,实验结果表明:与其他方法相比,本文算法在主观视觉和客观评价指标上均表现出优秀性能。
- Abstract:
-
The pansharpening of multispectral images represents a trending research topic in remote sensing image processing and interpretation. Moreover, compared with traditional pansharpening methods, deep learning-based pansharpening methods mainly extract deep features, thereby greatly improving the quality of fused images. Here, a method based on hybrid dual-branch convolutional neural network (CNN) and graph convolutional neural network (GCNN) is proposed to simultaneously extract spectral information, spatial information, and non-geometric structural information and improve the spatial and spectral resolutions of fused images. This hybrid method comprises the construction of a multi-resolution analysis fusion framework, followed by the construction of a feature extraction module, a feature fusion module, and an image reconstruction module based on deep neural networks. First, the hybrid dual-branch network module was constructed using 2D and 3D CNNs that focus on extracting spatial and spectral features, respectively. Second, GCNN was introduced to capture the spatial relationships of the nodes in the graph structure of the image and integrate non-local information. Afterward, the spatial, spectral, and non-geometric features extracted from multispectral and panchromatic images were fused by the feature fusion module. Finally, the fused features were input into the image reconstruction network to reconstruct the high-quality multispectral images. The proposed method was experimentally validated using GeoEye-1 and IKONOS remote sensing data. Compared with other methods, the experimental results obtained by the proposed method reveal its excellent performance in subjective and objective vision evaluations.
备注/Memo
收稿日期:2024-1-2。
基金项目:国家自然科学基金项目(62376214, 92270117);陕西省自然科学基础研究计划项目(2023- JC-YB-533).
作者简介:王文卿,副教授,主要研究方向为遥感影像处理与解译、智能信息处理、机器学习。主持国家自然科学基金项目2项,发表学术论文30余篇。E-mail:wangwenqing@xaut.edu.cn。;张小乔,硕士研究生,主要研究方向为遥感图像融合、深度学习、图像处理。E-mail:2210320138@stu.xaut.edu.cn。;刘涵,教授,主要研究方向为复杂工业过程建模与控制、机器学习、人工智能、智能信息处理。主持国家自然科学基金项目3项,发表学术论文160余篇。E-mail: liuhan@xaut.edu.cn。
通讯作者:刘涵. E-mail:liuhan@xaut.edu.cn
更新日期/Last Update:
1900-01-01