[1]杨奡飞,续欣莹,谢刚,等.印刷电路板缺陷持续检测与定位方法研究[J].智能系统学报,2025,20(1):219-229.[doi:10.11992/tis.202310024]
 YANG Aofei,XU Xinying,XIE Gang,et al.Research on continual detection and localization method for printed circuit board defect[J].CAAI Transactions on Intelligent Systems,2025,20(1):219-229.[doi:10.11992/tis.202310024]
点击复制

印刷电路板缺陷持续检测与定位方法研究

参考文献/References:
[1] DING Runwei, DAI Linhui, LI Guangpeng, et al. TDD-net: a tiny defect detection network for printed circuit boards[J]. CAAI transactions on intelligence technology, 2019, 4(2): 110-116.
[2] ADIBHATLA V A, CHIH H C, HSU C C, et al. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks[J]. Electronics, 2020, 9(9): 1547.
[3] LIN Qiangqiang, ZHOU Jinzhu, MA Qiurui, et al. EMRA-net: a pixel-wise network fusing local and global features for tiny and low-contrast surface defect detection[J]. IEEE transactions on instrumentation measurement, 2022, 71: 3151926.
[4] 钱万明, 朱红萍, 朱泓知, 等. 基于自适应加权特征融合的PCB裸板缺陷检测研究[J]. 电子测量与仪器学报, 2022, 36(10): 92-99.
QIAN Wanming, ZHU Hongping, ZHU Hongzhi, et al. Research on defect detection of PCB bare board based on adaptive weighted feature fusion[J]. Journal of electronic measurement and instrumentation, 2022, 36(10): 92-99
[5] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta automatica sinica, 2021, 47(5): 1017-1034.
[6] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedingds of the 35th International conference on machine learning. Stockholm: PMLR, 2018: 4393-4402.
[7] LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classification[EB/OL]. (2020-07-03)[2023-10-19]. http://arxiv.org/abs/2007.01760v3.
[8] BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[EB/OL]. (2020-05-05) [2023-10-19]. http://arxiv.org/abs/2005.02359v1.
[9] COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. (2020-05-05) [2023-10-19]. http://arxiv.org/abs/2005.02357v3.
[10] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: A patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition. Cham: Springer, 2021: 475-489.
[11] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14298-14308.
[12] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview[J]. IEEE signal processing magazine, 2018, 35(1): 53-65.
[13] 陈大鹏, 姚剑敏, 严群, 等. 基于自编码器结构改进的无监督图像异常检测[J]. 信息技术与信息化, 2023(8): 4-7.
CHEN Dapeng, YAO Jianmin, YAN Qun, et al. Unsupervised image anomaly detection based on improved autoencoder structure[J]. Information technology and informatization, 2023(8): 4-7.
[14] WANG Guodong, HAN Shumin, DING Errui, et al. Student-teacher feature pyramid matching for anomaly detection[EB/OL]. (2021-03-07)[2023-10-19]. http://arxiv.org/abs/2103.04257v3.
[15] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4182-4191.
[16] 秦荣荣, 高晓蓉, 罗林, 等. 基于注意力反向知识蒸馏的车轮踏面异常检测[J]. 激光与光电子学进展, 2023, 60(24): 230-239.
QIN Rongrong, GAO Xiaorong, LUO Lin, et al. Wheel tread anomaly detection based on attentional reverse knowledge distillation[J]. Laser & optoelectronics progress, 2023, 60(24): 230-239.
[17] KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the national academy of science, 2017, 114(13): 3521-3526.
[18] LI Zhizhong, HOIEM D. Learning without forgetting[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(12): 2935-2947.
[19] 张静宇, 续欣莹, 谢刚, 等. 基于弹性权重巩固与知识蒸馏的垃圾持续分类[J]. 智能系统学报, 2023, 18(4): 878-885.
ZHANG Jingyu, XU Xinying, XIE Gang, et al. Continuous classification of garbage based on the elastic weight consolidation and knowledge distillation[J]. CAAI transactions on intelligent systems, 2023, 18(4): 878-885.
[20] LIU Hao, LIU Huaping. Continual learning with recursive gradient optimization[EB/OL]. (2022-01-29)[2023-10-19]. http://arxiv.org/abs/2201.12522v1.
[21] REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: incremental classifier and representation learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5533-5542.
[22] BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Dark experience for general continual learning: a strong, simple baseline[EB/OL]. (2020-04-15)[2023-10-19]. http://arxiv.org/abs/2004.07211v2.
[23] HU Zhiyuan, LI Yunsheng, LYU Jiancheng, et al. Dense network expansion for class incremental learning[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 11858-11867.
[24] MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7765-7773.
[25] FERNANDO C, BANARSE D, BLUNDELL C, et al. PathNet: evolution channels gradient descent in super neural networks[EB/OL]. (2017-01-30)[2023-10-19]. http://arxiv.org/abs/1701.08734v1.
[26] 陈焕文. 网络分割与自适应突触可塑性融合的连续学习[J]. 华中科技大学学报(自然科学版), 2024, 52(3): 156-160.
CHEN Huanwen. Continual learning using split network and adaptive synaptic plasticity[J]. Journal of huazhong university of science and technology(natural science edition), 2024, 52(3): 156-160.
[27] PEZZE D D, ANELLO E, MASIERO C, et al. Continual learning approaches for anomaly detection[EB/OL]. (2022-11-21)[2023-10-19]. http://arxiv.org/abs/2212.11192v1.
[28] DENG Hanqiu, LI Xingyu. Anomaly detection via reverse distillation from one-class embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 9727-9736.
[29] DOUILLARD A, CORD M, OLLION C, et al. PODNet: pooled outputs distillation for small-tasks incremental learning[C]//European Conference on Computer Vision. Cham: Springer, 2020: 86-102.
[30] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2023-10-19]. http://arxiv.org/abs/1412.6980v9.
[31] TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 24511-24520.
[32] ZAVRTANIK V, KRISTAN M, SKO?AJ D. DRAEM-A discriminatively trained reconstruction embedding for surface anomaly detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 8310-8319.
相似文献/References:
[1]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(1):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7():75.
[2]逄增治,郑修楠,李金屏.全钢子午线轮胎X光图像的缺陷检测研究现状[J].智能系统学报,2019,14(4):793.[doi:10.11992/tis.201806014]
 PANG Zengzhi,ZHENG Xiunan,LI Jinping.Research status of defect detection in X-ray images of all-steel radial tires[J].CAAI Transactions on Intelligent Systems,2019,14():793.[doi:10.11992/tis.201806014]
[3]王凯旋,任福继,倪红军,等.面向电力设备红外图像的温度值识别算法[J].智能系统学报,2022,17(3):617.[doi:10.11992/tis.202105043]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Temperature value recognition algorithm for the infrared image of power equipment[J].CAAI Transactions on Intelligent Systems,2022,17():617.[doi:10.11992/tis.202105043]
[4]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18():858.[doi:10.11992/tis.202201009]
[5]高海洋,张明川,葛泉波,等.基于点集匹配的缺陷样本图像生成方法[J].智能系统学报,2023,18(5):1030.[doi:10.11992/tis.202209028]
 GAO Haiyang,ZHANG Mingchuan,GE Quanbo,et al.Method of defect sample image generation based on point set matching[J].CAAI Transactions on Intelligent Systems,2023,18():1030.[doi:10.11992/tis.202209028]
[6]王延春秋,葛泉波,刘华平.石板材表面缺陷检测的无监督学习方法[J].智能系统学报,2023,18(6):1344.[doi:10.11992/tis.202212006]
 WANG Yanchunqiu,GE Quanbo,LIU Huaping.Unsupervised learning method for surface defect detection of slate materials[J].CAAI Transactions on Intelligent Systems,2023,18():1344.[doi:10.11992/tis.202212006]
[7]吴瑞林,葛泉波,刘华平.基于YOLOX的类增量印刷电路板缺陷检测方法[J].智能系统学报,2024,19(4):1061.[doi:10.11992/tis.202309044]
 WU Ruilin,GE Quanbo,LIU Huaping.Class-incremental printed circuit board defect detection method based on YOLOX[J].CAAI Transactions on Intelligent Systems,2024,19():1061.[doi:10.11992/tis.202309044]
[8]吴一全,庞雅轩.手机表面缺陷的机器视觉检测方法研究进展[J].智能系统学报,2025,20(1):33.[doi:10.11992/tis.202312036]
 WU Yiquan,PANG Yaxuan.Research progress of mobile phone surface defect detection based on machine vision[J].CAAI Transactions on Intelligent Systems,2025,20():33.[doi:10.11992/tis.202312036]

备注/Memo

收稿日期:2023-10-19。
基金项目:山西省回国留学人员科研项目(2021-046);山西省自然科学基金项目(202103021224056);山西省科技合作交流专项(202104041101030).
作者简介:杨奡飞,硕士研究生,主要研究方向为深度学习和缺陷检测。E-mail:yangaofei1998@163.com。;续欣莹,教授,美国圣荷西州立大学访问学者,中国人工智能学会科普工作委员会常务委员、认知系统与信息处理专委会委员,主要研究方向为人工智能、视觉感知与智能控制。主持国家级、省部级和企业等重要项目20 余项,发表学术论文 80 余篇。E-mail:xuxinying@tyut.edu.cn。;刘华平,教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会副主任,主要研究方向为具身感知与学习,吴文俊人工智能科学技术奖获得者。主持国家自然科学基金重点项目2 项,发表学术论文 100 余篇。E-mail:hpliu@tsinghua.edu.cn。
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com