[1]杨奡飞,续欣莹,谢刚,等.印刷电路板缺陷持续检测与定位方法研究[J].智能系统学报,2025,20(1):219-229.[doi:10.11992/tis.202310024]
YANG Aofei,XU Xinying,XIE Gang,et al.Research on continual detection and localization method for printed circuit board defect[J].CAAI Transactions on Intelligent Systems,2025,20(1):219-229.[doi:10.11992/tis.202310024]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
219-229
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2025-01-05
- Title:
-
Research on continual detection and localization method for printed circuit board defect
- 作者:
-
杨奡飞1, 续欣莹1, 谢刚1, 刘华平2
-
1. 太原理工大学 电气与动力工程学院, 山西 太原 030024;
2. 清华大学 计算机科学与技术系, 北京 100084
- Author(s):
-
YANG Aofei1, XU Xinying1, XIE Gang1, LIU Huaping2
-
1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
缺陷检测; 缺陷定位; 持续学习; 深度学习; 无监督学习; 反向蒸馏; 一分类嵌入; 池化蒸馏; 印刷电路板
- Keywords:
-
defect detection; defect localization; continual learning; deep learning; unsupervised learning; reverse distillation; one-class classification embedding; pooling distillation; printed circuit board
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202310024
- 摘要:
-
针对目前缺陷检测与定位方法只能对特定类型的缺陷进行检测,而不能连续地学习检测不同类型缺陷的问题,提出了一种基于反向蒸馏模型的缺陷检测与定位方法。该方法以反向蒸馏模型为基础模型,对模型中间层输出的特征图以及一分类嵌入表示进行池化蒸馏,使得模型能够在连续的任务序列上不断地学习新的检测任务,从而达到持续学习的能力。在4个连续的印刷电路板(printed circuit board, PCB)缺陷检测与定位任务上进行实验,实验结果表明该方法的性能优于对比方法,能够满足工业生产场景的应用需求,在抑制对旧任务样本的检测能力的遗忘的同时,能够保持学习检测新任务的能力。
- Abstract:
-
Existing defect detection and localization methods can only detect fixed types of defects and cannot meet the continual defect detection requirements in real application scenarios. To address this issue, this paper proposes a defect detection and localization method based on the reverse distillation model. This method uses the reverse distillation model as the basis model and performs pooling distillation on the feature maps from the middle layers of the model and the one-class classification embedding representation. So that the model can continually train new detection tasks without forgetting previous tasks. Experimental results on four printed circuit board defect detection and localization tasks show that this method can meet the requirements of industrial applications, and it outperforms other methods. It maintains the ability to learn and detect new tasks while suppressing the trend of forgetting the ability to detect samples of previous tasks.
备注/Memo
收稿日期:2023-10-19。
基金项目:山西省回国留学人员科研项目(2021-046);山西省自然科学基金项目(202103021224056);山西省科技合作交流专项(202104041101030).
作者简介:杨奡飞,硕士研究生,主要研究方向为深度学习和缺陷检测。E-mail:yangaofei1998@163.com。;续欣莹,教授,美国圣荷西州立大学访问学者,中国人工智能学会科普工作委员会常务委员、认知系统与信息处理专委会委员,主要研究方向为人工智能、视觉感知与智能控制。主持国家级、省部级和企业等重要项目20 余项,发表学术论文 80 余篇。E-mail:xuxinying@tyut.edu.cn。;刘华平,教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会副主任,主要研究方向为具身感知与学习,吴文俊人工智能科学技术奖获得者。主持国家自然科学基金重点项目2 项,发表学术论文 100 余篇。E-mail:hpliu@tsinghua.edu.cn。
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
2025-01-05