[1]蒋世杰,夏秀山,翟伟,等.基于ODE扩散模型的多类异常检测和定位[J].智能系统学报,2025,20(2):376-388.[doi:10.11992/tis.202402022]
JIANG Shijie,XIA Xiushan,ZHAI Wei,et al.ODE diffusion model for multiclass anomaly detection and localization[J].CAAI Transactions on Intelligent Systems,2025,20(2):376-388.[doi:10.11992/tis.202402022]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第2期
页码:
376-388
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-03-05
- Title:
-
ODE diffusion model for multiclass anomaly detection and localization
- 作者:
-
蒋世杰1, 夏秀山2, 翟伟1, 曹洋1
-
1. 中国科学技术大学 自动化系, 安徽 合肥 230027;
2. 中国科学技术大学 先进技术研究院, 安徽 合肥 230031
- Author(s):
-
JIANG Shijie1, XIA Xiushan2, ZHAI Wei1, CAO Yang1
-
1. Department of Automation, University of Science & Technology of China, Hefei 230027, China;
2. Institute of Advanced Technology, University of Science & Technology of China, Hefei 230031, China
-
- 关键词:
-
缺陷检测; 异常检测; 异常定位; 扩散模型; 去噪网络; 常微分方程; 无监督学习; 时间步感知
- Keywords:
-
defect detection; anomaly detection; anomaly localization; diffusion model; denoising network; ordinary differential equations; unsupervised learning; timestep-perceptive
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202402022
- 摘要:
-
多类异常检测和定位旨在训练一个单一模型,在多类场景下该模型能够识别出偏离正常的异常区域。最近基于扩散模型的方法在该项任务中表现出色而开始受到关注,然而,现有方法侧重于改进扩散模型去噪网络,通过添加更多约束,保持多步生成的高一致性,实现更高的重构性能,但更多的采样步数也意味着更高的计算开销。为此,本文提出了一种基于常微分方程(ordinary differential equations, ODE)扩散模型的多类异常检测和定位方法,只需一步即可实现高质量的重构生成,同时引入时间步感知网络来缓解采样步数少可能导致的一致性和恒等捷径问题,从而进一步提高重构质量。在通用的基准数据集MVTec-AD上进行的实验结果表明,本文方法在精度上可与当前最先进方法相媲美,但是计算量更低速度更快,满足了工业异常检测和定位的高精度和实时性需求。
- Abstract:
-
Multiclass anomaly detection and localization methods aim to train a single model capable of identifying anomalous regions that deviate from normal across multiple categories. Diffusion-based methods have recently attracted attention due to their excellent performance in this task. However, existing methods concentrate on enhancing the denoising network of the diffusion model by adding more constraints to ensure high consistency in multistep generation and achieve superior reconstruction performance. Additional sampling steps also lead to higher computational costs. We propose a novel multiclass anomaly detection and localization method called TimeNet to address these issues. It is based on the diffusion model of ordinary differential equations and achieves high-quality reconstruction with only one-step generation. We introduce a time-perceptive network to address the consistency and identity shortcut problems that may arise from small sampling steps, which further improves the reconstruction quality. Experiments on the most popular benchmark MVTec-AD dataset demonstrate that our TimeNet competes with the current state-of-the-art methods in terms of accuracy while requiring less computational effort and achieving faster speeds. The high accuracy and real-time performance of TimeNet satisfy the requirements for industrial anomaly detection and localization.
备注/Memo
收稿日期:2024-2-22。
基金项目:安徽省重点研究与开发计划项目(2022107020030).
作者简介:蒋世杰,硕士研究生,主要研究方向为计算机视觉、异常检测。E-mail:jiangshijie@mail.ustc.edu.cn;夏秀山,副研究员,主要研究方向为数字图像处理、计算机视觉、人工智能。主持、参与国家和省部级科研项目10余项,发表学术论文10余篇。E-mail:xiaxiushan@iat.ustc.edu.cn;翟伟,博士后研究员,主要研究方向为计算机视觉、具身智能、多模态分析。主持国家自然科学基金青年项目1项,发表学术论文40余篇。E-mail:wzhai056@ustc.edu.cn。
通讯作者:夏秀山. E-mail:xiaxiushan@iat.ustc.edu.cn
更新日期/Last Update:
2025-03-05