[1]吴国栋,秦辉,胡全兴,等.大语言模型及其个性化推荐研究[J].智能系统学报,2024,19(6):1351-1365.[doi:10.11992/tis.202309036]
WU Guodong,QIN Hui,HU Quanxing,et al.Research on large language models and personalized recommendation[J].CAAI Transactions on Intelligent Systems,2024,19(6):1351-1365.[doi:10.11992/tis.202309036]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1351-1365
栏目:
综述
出版日期:
2024-12-05
- Title:
-
Research on large language models and personalized recommendation
- 作者:
-
吴国栋, 秦辉, 胡全兴, 王雪妮, 吴贞畅
-
安徽农业大学 信息与计算机学院, 安徽 合肥 230036
- Author(s):
-
WU Guodong, QIN Hui, HU Quanxing, WANG Xueni, WU Zhenchang
-
School of Information and Computer, Anhui Agricultural University, Hefei 230036, China
-
- 关键词:
-
大语言模型; 推荐; 深度学习; 监督微调; 对齐; 提示学习; 生成性; 多模态
- Keywords:
-
large language model; recommendation; deep learning; supervised fine-tuning; alignment; prompt learning; generative; multimodal
- 分类号:
-
TP301
- DOI:
-
10.11992/tis.202309036
- 摘要:
-
大语言模型因其强大的自然语言处理能力在人工智能领域产生了巨大影响,使得大语言模型个性化推荐成为当前推荐系统研究的新兴领域。本文在深入分析已有大语言模型及其个性化推荐相关研究基础上,探讨大语言模型推荐的过程,并从直接推荐、基于表示学习推荐、基于生成性学习推荐和提示学习推荐四方面详细分析了大语言模型推荐主要的研究进展。指出现有大语言模型推荐研究中存在的推荐偏差、提示脆弱性、有限上下文、高延迟、公平性和评估等问题,展望未来大语言模型推荐研究的主要方向,包括大语言模型推荐的安全性、面向领域的大语言模型推荐、跨模态大语言模型推荐、融合检索任务的大语言模型推荐以及大语言模型推荐的可解释性等。
- Abstract:
-
Large language models have revolutionized natural language processing within artificial intelligence, significantly advancing personalized recommendation systems. This paper provides an in-depth analysis of existing research on large language models and their application in personalized recommendations. It explores the process of large language model recommendation and thoroughly analyzes the main research advancements from four perspectives: direct recommendation, representation learning-based recommendation, generation-based recommendation, and prompt learning recommendation. The study identifies several challenges in current research on large language model recommendation, including recommendation bias, vulnerability to prompts, limited contextual understanding, high latency, fairness issues, and evaluation difficulties. It also presents future directions for research on large language model recommendation, including enhancing the security of large language model recommendations, developing domain-oriented large language model recommendations, exploring cross-modal large language model recommendations, integrating retrieval tasks with large language model recommendations, and improving the interpretability of large language model recommendations.
备注/Memo
收稿日期:2023-9-21。
基金项目:国家自然科学基金项目(32371993);安徽省自然科学基金项目(2108085MF209);安徽省科技重大专项(202103b06020013).
作者简介:吴国栋,副教授,主要研究方向为深度学习、推荐系统。主持安徽省自然科学研究重点项目 1 项、一般项目 1 项、安徽省科技攻关重点项目 1 项。发表学术论文30 余篇。E-mail:wugd@ahau.edu.cn;秦辉,硕士研究生,主要研究方向为推荐系统。E-mail:2504864202@qq.com;胡全兴,硕士研究生,主要研究方向区块链可信推荐。E-mail:1763273299@qq.ocm。
通讯作者:吴国栋. E-mail:gdwu1120@qq.com
更新日期/Last Update:
2024-11-05