[1]张丽芳,李兴森.基元潜部特征元挖掘的智能方法研究[J].智能系统学报,2025,20(2):457-464.[doi:10.11992/tis.202310039]
ZHANG Lifang,LI Xingsen.Research on intelligent methods for latent features mining of basic element[J].CAAI Transactions on Intelligent Systems,2025,20(2):457-464.[doi:10.11992/tis.202310039]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第2期
页码:
457-464
栏目:
学术论文—人工智能基础
出版日期:
2025-03-05
- Title:
-
Research on intelligent methods for latent features mining of basic element
- 作者:
-
张丽芳, 李兴森
-
广东工业大学 可拓学与创新方法研究所, 广东 广州 510006
- Author(s):
-
ZHANG Lifang, LI Xingsen
-
Institute of Extenics and Innovation Methods, Guangdong University of Technology, Guangzhou 510006, China
-
- 关键词:
-
可拓学; 潜部特征元; 特征元; 基元理论; 人工智能; 自然语言处理; 大语言模型; 可拓智能
- Keywords:
-
extenics; latent feature element; feature element; basic-element theory; artificial intelligence; natural language processing; large language model; extension intelligence
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202310039
- 摘要:
-
潜部特征元构建是可拓学基元理论的重要研究内容,潜在信息挖掘对解决问题和激发创新思维至关重要。为了解决目前人工识别基元潜部特征元效率低、覆盖面窄和数量不足的问题,研究基元潜部特征元显化理论与人工智能算法实现的结合点,提出挖掘基元潜部特征元的流程化、系统性方法,使用爬虫技术收集目标基元对象的相关信息,清洗噪音数据并从句子中挖掘构成特征元的名称和描述,用概率统计的定量方法筛选潜部特征元并通过Python代码实现智能挖掘功能,最后通过案例对比分析进行论证。研究结果能有效提高基元潜部特征元的识别效率和智能化水平,对从复杂多变的语料句法中进行语义概括也有一定的参考作用,为进一步提高特征名称及其量值智能提取的精确性积累训练集,促进可拓展型人工智能理论的发展。
- Abstract:
-
Latent feature element construction is a key aspect of the basic-element theory of extenics, and mining latent information is crucial for problem solving and fostering innovative thinking. This study explores the integration of the basic-element latent feature element manifestation theory with artificial intelligence algorithms to address the current problems of low efficiency, narrow coverage and the insufficient number of manually identified basic-element latent feature elements. A process-oriented, systematic method for mining latent feature elements of basic elements is proposed. The method involves using crawler technology to collect relevant information regarding target basic-element objects, cleaning noisy data, and mining names and descriptions of constituent feature elements from sentences. A probability statistical approach is then used to filter latent feature elements, with the intelligent mining process implemented through Python code. Finally, a case study comparison is performed to demonstrate the effectiveness of this approach. Research results can notably improve the recognition efficiency and intelligence level of basic-element latent feature elements while also providing valuable insights for semantic generalization from complex and changeable dynamic corpus syntax. Additionally, it contributes to building a training set for enhancing the accuracy of intelligent extraction of feature names and their quantitative values, thus promoting the development of extensible artificial intelligence theory.
更新日期/Last Update:
2025-03-05