[1]牟建鹏,刘文韬,熊伟丽.基于双向生成对抗网络的工业过程故障检测[J].智能系统学报,2024,19(5):1199-1208.[doi:10.11992/tis.202306011]
 MOU Jianpeng,LIU Wentao,XIONG Weili.Industrial process fault detection based on bidirectional generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2024,19(5):1199-1208.[doi:10.11992/tis.202306011]
点击复制

基于双向生成对抗网络的工业过程故障检测

参考文献/References:
[1] YIN Shen, YANG Xuebo, KARIMI H R. Data-driven adaptive observer for fault diagnosis[J]. Mathematical problems in engineering, 2012(1): 832-836.
[2] GE Zhiqiang. Review on data-driven modeling and monitoring for plant-wide industrial processes[J]. Chemometrics and intelligent laboratory systems, 2017, 171: 16-25.
[3] JIANG Qingchao, YAN Xuefeng, HUANG Biao. Performance-driven distributed PCA process monitoring based on fault-relevant variable selection and Bayesian inference[J]. IEEE transactions on industrial electronics, 2016, 63(1): 377-386.
[4] YU Gang. Fault feature extraction using independent component analysis with reference and its application on fault diagnosis of rotating machinery[J]. Neural computing and applications, 2015, 26(1): 187-198.
[5] ZHONG Bin, WANG Jing, ZHOU Jinglin, et al. Quality-related statistical process monitoring method based on global and local partial least-squares projection[J]. Industrial & engineering chemistry research, 2016, 55(6): 1609-1622.
[6] LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1): 223-234.
[7] WANG Kai, CHEN J, SONG Zhihuan. Performance analysis of dynamic PCA for closed-loop process monitoring and its improvement by output oversampling scheme[J]. IEEE transactions on control systems technology, 2019, 27(1): 378-385.
[8] DEWI Y N, RIANA D, MANTORO T. Improving Na?ve Bayes performance in single image pap smear using weighted principal component analysis[C]//2017 International Conference on Computing, Engineering, and Design. Kuala Lumpur: IEEE, 2017: 1-5.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[10] SARATH C A P, LAULY S, LAROCHELLE H, et al. An autoencoder approach to learning bilingual word representations[J]. Advances in neural information processing systems, 2014, 3: 1853-1861.
[11] GOODFELLOW I J, POUGET J, MIRZA M, et al. Generative adversarial networks[J]. Advances in neural information processing systems, 2014, 3: 2672-2680.
[12] 朱晓荣, 张佩佩. 基于GAN的异构无线网络故障检测与诊断算法[J]. 通信学报, 2020, 41(8): 110-119.
ZHU Xiaorong, ZHANG Peipei. Fault detection and diagnosis method for heterogeneous wireless network based on GAN[J]. Journal on communications, 2020, 41(8): 110-119.
[13] 郭俊锋, 王淼生, 孙磊, 等. 基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法[J]. 计算机集成制造系统, 2022, 28(9): 2825-2835.
GUO Junfeng, WANG Miaosheng, SUN Lei, et al. New method of fault diagnosis for rolling bearing imbalance data set based on generative adversarial network[J]. Computer integrated manufacturing systems, 2022, 28(9): 2825-2835.
[14] YANG Xin, FENG Dajun. Generative adversarial network based anomaly detection on the benchmark Tennessee Eastman process[C]//2019 5th International Conference on Control, Automation and Robotics. Beijing: IEEE, 2019: 644-648.
[15] PATIL R, BIRADAR R, RAVI V, et al. Network traffic anomaly detection using PCA and BiGAN[J]. Internet technology letters, 2022, 5(1): 1-6.
[16] KAPLAN M O, ALPTEKIN S E. An improved BiGAN based approach for anomaly detection[J]. Procedia computer science, 2020, 176: 185-194.
[17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[18] YU Jianbo, LIU Xing, YE L. Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1-15.
[19] PARK P, DI MARCO P, SHIN H, et al. Fault detection and diagnosis using combined autoencoder and long short-term memory network[J]. Sensors, 2019, 19(21): 4612.
[20] VINCENT D, ISHMAEL B, BEN P, et al. Adversarially learned inference. (2016-06-02)[2023-06-07]. https://arxiv.org/abs/1606.00704.
[21] 潘丙翱. 基于自编码器的高维时间序列异常检测[D]. 杭州: 浙江大学, 2021.
PAN Bing’ao. Journal of chemical engineering anomaly detection of high-dimensional time series based on self-coder[D]. Hangzhou: Zhejiang University, 2021.
[22] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(5): 1947-1957.
[23] 宋励嘉, 童楚东. 基于缺失变量估计误差的工业过程监测方法[J]. 高校化学工程学报, 2019, 33(1): 167-173.
SONG Lijia, TONG Chudong. Industrial process monitoring based on estimation error of missing variables[J]. Journal of chemical engineering of Chinese universities, 2019, 33(1): 167-173.
[24] 吴晓东, 熊伟丽. 采用编码输入的生成对抗网络故障检测方法及应用[J]. 智能系统学报, 2022, 17(3): 496-505.
WU Xiaodong, XIONG Weili. Fault detection method and its application using GAN with an encoded input[J]. CAAI transactions on intelligent systems, 2022, 17(3): 496-505.
[25] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: UnSupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020: 23-27.
相似文献/References:
[1]齐俊桐,韩建达.旋翼飞行机器人故障诊断与容错控制技术综述[J].智能系统学报,2007,2(2):31.
 QI Jun-tong,HAN Jian-da.Fault diagnosis and faulttolerant control of rotorcraft flying robots: a survey[J].CAAI Transactions on Intelligent Systems,2007,2():31.
[2]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15():33.[doi:10.11992/tis.201908015]
[3]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():74.[doi:10.11992/tis.202002002]
[4]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[5]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]
[6]朱海龙,耿文强,韩劲松,等.利用置信规则库构建WSN节点故障检测模型[J].智能系统学报,2021,16(3):511.[doi:10.11992/tis.202009006]
 ZHU Hailong,GENG Wenqiang,HAN Jinsong,et al.Constructing a WSN node fault detection model using the belief rule base[J].CAAI Transactions on Intelligent Systems,2021,16():511.[doi:10.11992/tis.202009006]
[7]郑静,熊伟丽.基于互信息的多块k近邻故障监测及诊断[J].智能系统学报,2021,16(4):717.[doi:10.11992/tis.202007035]
 ZHENG Jing,XIONG Weili.Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information[J].CAAI Transactions on Intelligent Systems,2021,16():717.[doi:10.11992/tis.202007035]
[8]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():1073.[doi:10.11992/tis.202012010]
[9]刘万军,佟畅,曲海成.空洞卷积与注意力融合的对抗式图像阴影去除算法[J].智能系统学报,2021,16(6):1081.[doi:10.11992/tis.202011022]
 LIU Wanjun,TONG Chang,QU Haicheng.An antagonistic image shadow removal algorithm based on dilated convolution and attention mechanism[J].CAAI Transactions on Intelligent Systems,2021,16():1081.[doi:10.11992/tis.202011022]
[10]张冀,曹艺,王亚茹,等.融合VAE和StackGAN的零样本图像分类方法[J].智能系统学报,2022,17(3):593.[doi:10.11992/tis.202107012]
 ZHANG Ji,CAO Yi,WANG Yaru,et al.Zero-shot image classification method combining VAE and StackGAN[J].CAAI Transactions on Intelligent Systems,2022,17():593.[doi:10.11992/tis.202107012]
[11]吴晓东,熊伟丽.采用编码输入的生成对抗网络故障检测方法及应用[J].智能系统学报,2022,17(3):496.[doi:10.11992/tis.202102003]
 WU Xiaodong,XIONG Weili.Fault detection method and its application using GAN with an encoded input[J].CAAI Transactions on Intelligent Systems,2022,17():496.[doi:10.11992/tis.202102003]

备注/Memo

收稿日期:2023-6-7。
基金项目:国家自然科学基金项目(61773182).
作者简介:牟建鹏,硕士研究生,主要研究方向为复杂工业过程建模和故障诊断。E-mail:moujianpeng123@163.com;刘文韬,博士研究生, 主要研究方向为系统辨识、复杂工业过程建模。E-mail:wtliu@126.com;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模与监控、智能软测量技术。获得江苏省科学技术二等奖1 项,授权发明专利30项,发表学术论文近百篇。E-mail:greenpre@163.com。
通讯作者:熊伟丽. E-mail:greenpre@163.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com