[1]吴晓东,熊伟丽.采用编码输入的生成对抗网络故障检测方法及应用[J].智能系统学报,2022,17(3):496-505.[doi:10.11992/tis.202102003]
 WU Xiaodong,XIONG Weili.Fault detection method and its application using GAN with an encoded input[J].CAAI Transactions on Intelligent Systems,2022,17(3):496-505.[doi:10.11992/tis.202102003]
点击复制

采用编码输入的生成对抗网络故障检测方法及应用

参考文献/References:
[1] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(3): 349–365
PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta automatica sinica, 2017, 43(3): 349–365
[2] 刘强, 卓洁, 郎自强, 等. 数据驱动的工业过程运行监控与自优化研究展望[J]. 自动化学报, 2018, 44(11): 1944–1956
LIU Qiang, ZHUO Jie, LANG Ziqiang, et al. Perspectives on data-driven operation monitoring and self-optimization of industrial processes[J]. Acta automatica sinica, 2018, 44(11): 1944–1956
[3] 曹跃, 陈志文, 袁小锋, 等. 部分子块通讯的分布式PCA厂级工业过程监测方法[J]. 控制与决策, 2020, 35(6): 1281–1290
CAO Yue, CHEN Zhiwen, YUAN Xiaofeng, et al. Distributed PCA for plant-wide processes monitoring with partial block communication[J]. Control and decision, 2020, 35(6): 1281–1290
[4] 童楚东, 史旭华, 蓝艇. 正交信号校正的自回归模型及其在动态过程监测中的应用[J]. 控制与决策, 2016, 31(8): 1505–1508
TONG Chudong, SHI Xuhua, LAN Ting. Orthogonal signal correction based auto-regression model with application to dynamic process monitoring[J]. Control and decision, 2016, 31(8): 1505–1508
[5] 冯立伟, 张成, 李元, 等. 基于标准距离k近邻的多模态过程故障检测策略[J]. 控制理论与应用, 2019, 36(4): 553–560
FENG Liwei, ZHANG Cheng, LI Yuan, et al. Fault detection strategy of standard-distance-based k nearest neighbor rule in multimode processes[J]. Control theory and applications, 2019, 36(4): 553–560
[6] HUANG Yi, SUN Shiyu, DUAN Xiusheng, et al. A study on deep neural networks framework[C]//2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi’an: IEEE, 2016: 1519–1522.
[7] CHEN Xuemei, ZHENG Xuelong, WANG Zijia, et al. Multi-frequency data fusion for attitude estimation based on multi-layer perception and Cubature Kalman Filter[J]. IEEE access, 2020, 8: 144373–144381.
[8] LIU Shuo, LIU Yulong, GU Yuhai, et al. Method of extracting gear fault feature based on stacked autoencoder[J]. The journal of engineering, 2019, 2019(23): 8765–8769.
[9] MIAO Jun, SUN Keqiang, LIAO Xuan, et al. Human segmentation based on compressed deep convolutional neural network[J]. IEEE access, 2020, 8: 167585–167595.
[10] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in neural information processing systems, 2014, 3(11): 2672–2680.
[11] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segmentation using adversarial networks[EB/OL].(2016–11-25)[2021-02-03]https://arxiv.org/abs/1611.08408.
[12] LI Jianan, LIANG Xiaodan, WEI Yunchao, et al. Perceptual generative adversarial networks for small object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1951–1959.
[13] REED S E, AKATA Z, YAN Xinchen, et al. Generative adversarial text to image synthesis[C]//Proceedings of the 33nd International Conference on Machine Learning (ICML). New York: ACM, 2016: 1060–1069.
[14] JIANG Tao, LI Yunsong, XIE Weiying, et al. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(7): 4666–4679.
[15] LEE Y O, JO J, HWANG J. Application of deep neural network and generative adversarial network to industrial maintenance: a case study of induction motor fault detection[C]//2017 IEEE International Conference on Big Data (Big Data). Boston: IEEE, 2017: 3248–3253.
[16] VIOLA J, CHEN Yangquan, WANG Jing. FaultFace: deep convolutional generative adversarial network (DCGAN) based ball-bearing failure detection method[J]. Information sciences, 2021, 542: 195–211.
[17] 顾炳斌, 熊伟丽, 史旭东. 基于故障敏感主元的多块PCA故障监测方法[J]. 高校化学工程学报, 2019, 33(6): 1499–1508
GU Bingbin, XIONG Weili, SHI Xudong. Multi-block PCA process monitoring based on fault sensitive principal components[J]. Journal of chemical engineering of Chinese universities, 2019, 33(6): 1499–1508
[18] WANG Huangang, LI Xin, ZHANG Tao. Generative adversarial network based novelty detection usingminimized reconstruction error[J]. Frontiers of information technology and electronic engineering, 2018, 19(1): 116–125.
[19] 金晓航, 许壮伟, 孙毅, 等. 基于生成对抗网络的风电机组在线状态监测[J]. 仪器仪表学报, 2020, 41(4): 68–76
JIN Xiaohang, XU Zhuangwei, SUN Yi, et al. Online condition monitoring of wind turbine based on generative adversarial network[J]. Chinese journal of scientific instrument, 2020, 41(4): 68–76
[20] YANG Xin, FENG Dajun. Generative adversarial network based anomaly detection on the benchmark Tennessee Eastman process[C]//2019 5th International Conference on Control, Automation and Robotics (ICCAR). Beijing: IEEE, 2019: 644–648.
[21] SPYRIDON P, BOUTALIS Y S. Generative adversarial networks for unsupervised fault detection[C]//2018 European Control Conference (ECC). Limassol: IEEE, 2018: 691–696.
[22] 陈伟宏, 安吉尧, 李仁发, 等. 深度学习认知计算综述[J]. 自动化学报, 2017, 43(11): 1886–1897
CHEN Weihong, AN Jiyao, LI Renfa, et al. Review on deep-learning-based cognitive computing[J]. Acta automatica sinica, 2017, 43(11): 1886–1897
[23] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203–230
YUAN Feiniu, ZHANG Lin, SHI Jinting, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese journal of computers, 2019, 42(1): 203–230
[24] 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736–749
GU Bingbin, XIONG Weili. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC journal, 2019, 70(2): 736–749
[25] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring[J]. Industrial & engineering chemistry research, 2013, 52(5): 1947–1957.
相似文献/References:
[1]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[2]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[3]杨文元.多标记学习自编码网络无监督维数约简[J].智能系统学报,2018,13(5):808.[doi:10.11992/tis.201804051]
 YANG Wenyuan.Unsupervised dimensionality reduction of multi-label learning via autoencoder networks[J].CAAI Transactions on Intelligent Systems,2018,13():808.[doi:10.11992/tis.201804051]
[4]张潇鲲,刘琰,陈静.引入外部词向量的文本信息网络表示学习[J].智能系统学报,2019,14(5):1056.[doi:10.11992/tis.201809037]
 ZHANG Xiaokun,LIU Yan,CHEN Jing.Representation learning using network embedding based on external word vectors[J].CAAI Transactions on Intelligent Systems,2019,14():1056.[doi:10.11992/tis.201809037]
[5]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33.[doi:10.11992/tis.201908015]
 ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15():33.[doi:10.11992/tis.201908015]
[6]毕晓君,潘梦迪.基于生成对抗网络的机载遥感图像超分辨率重建[J].智能系统学报,2020,15(1):74.[doi:10.11992/tis.202002002]
 BI Xiaojun,PAN Mengdi.Super-resolution reconstruction of airborne remote sensing images based on the generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():74.[doi:10.11992/tis.202002002]
[7]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[8]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]
[9]王丽娟,丁世飞.一种基于ELM-AE特征表示的谱聚类算法[J].智能系统学报,2021,16(3):560.[doi:10.11992/tis.202005021]
 WANG Lijuan,DING Shifei.A spectral clustering algorithm based on ELM-AE feature representation[J].CAAI Transactions on Intelligent Systems,2021,16():560.[doi:10.11992/tis.202005021]
[10]姜义,吕荣镇,刘明珠,等.基于生成对抗网络的人脸口罩图像合成[J].智能系统学报,2021,16(6):1073.[doi:10.11992/tis.202012010]
 JIANG Yi,LYU Rongzhen,LIU Mingzhu,et al.Masked face image synthesis based on a generative adversarial network[J].CAAI Transactions on Intelligent Systems,2021,16():1073.[doi:10.11992/tis.202012010]

备注/Memo

收稿日期:2021-02-03。
基金项目:国家自然科学基金项目(61773182);国家重点研发计划子课题(2018YFC1603705-03);广东省科技专项资金项目(2020ST010)
作者简介:吴晓东,硕士研究生,主要研究方向为工业过程故障检测与诊断;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模与监控、智能软测量技术。主持国家自然科学基金面上项目、国家自然科学基金青年项目、江苏省产学研等省部级以上纵向项目多项。获得中国商业联合会科技进步一等奖1项。获授权发明专利近20项,发表学术论文100余篇
通讯作者:熊伟丽.E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com