[1]孙美晨,孙正,候英飒.AAR-Net:用于声学异质介质光声图像重建的深度神经网络[J].智能系统学报,2024,19(2):278-289.[doi:10.11992/tis.202212024]
 SUN Meichen,SUN Zheng,HOU Yingsa.AAR-Net: a deep neural network for photoacoustic image reconstruction in heterogeneous acoustic media[J].CAAI Transactions on Intelligent Systems,2024,19(2):278-289.[doi:10.11992/tis.202212024]
点击复制

AAR-Net:用于声学异质介质光声图像重建的深度神经网络

参考文献/References:
[1] 李娇, 李帅, 陈冀景, 等. 非接触光声成像研究进展及其在生物医学上的应用[J]. 中国激光, 2021, 48(19): 284–302
LI Jiao, LI Shuai, CHEN Jijing, et al. Progress and biomedical application of non-contact photoacoustic imaging[J]. Chinese journal of lasers, 2021, 48(19): 284–302
[2] 王雅慧, 王浩全, 任时磊. 滤波反投影算法在光声层析成像中的应用[J]. 国外电子测量技术, 2020, 39(5): 1–4
WANG Yahui, WANG Haoquan, REN Shilei. Application of filter back projection algorithm in photoacoustic tomography[J]. Foreign electronic measurement technology, 2020, 39(5): 1–4
[3] 韩朵朵, 孙正, 苑园. 血管内光声图像的时间反演重建方法[J]. 中国图象图形学报, 2016, 21(4): 442–450
HAN Duoduo, SUN Zheng, YUAN Yuan. Time-reversal based reconstruction of intravascular photoacoustic images[J]. Journal of image and graphics, 2016, 21(4): 442–450
[4] POUDEL J, LOU Yang, ANASTASIO M A. A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography[J]. Physics in medicine & biology, 2019, 64(14): 14TR01.
[5] 段爽, 孙正. 声学特性不均匀组织的光声层析图像重建研究进展[J]. 生物医学工程学杂志, 2019, 36(3): 486–492
DUAN Shuang, SUN Zheng. Review on photoacoustic tomographic image reconstruction for acoustically heterogeneous tissues[J]. Journal of biomedical engineering, 2019, 36(3): 486–492
[6] PETROSYAN T, THEODOROU M, BAMBER J, et al. Rapid scanning wide-field clutter elimination in epi-optoacoustic imaging using comb LOVIT[J]. Photoacoustics, 2018, 10: 20–30.
[7] LEDIJU B M A, KUO N, SONG D Y, et al. Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds[J]. Biomedical optics express, 2013, 4(10): 1964–1977.
[8] NGUYEN H N Y, HUSSAIN A, STEENBERGEN W. Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation[J]. Biomedical optics express, 2018, 9(10): 4613.
[9] KUNIYIL A S M, STEENBERGEN W. Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging[J]. Photoacoustics, 2015, 3(4): 123–131.
[10] SCHWAB H M, BECKMANN M F, SCHMITZ G. Photoacoustic clutter reduction by inversion of a linear scatter model using plane wave ultrasound measurements[J]. Biomedical optics express, 2016, 7(4): 1468.
[11] HIRSCH L, GONZ?LEZ M G, REY V L. On the robustness of model-based algorithms for photoacoustic tomography: comparison between time and frequency domains[J]. Review of scientific instruments, 2021, 92(11): 114901.
[12] DE?N-BEN X L, ?ZBEK A, L?PEZ-SCHIER H, et al. Acoustic scattering mediated single detector optoacoustic tomography[J]. Physical review letters, 2019, 123(17): 174301.
[13] YIN Jie, TAO Chao, CAI Peng, et al. Photoacoustic tomography based on the Green’s function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer[J]. Applied physics letters, 2015, 106(23): 234101.
[14] RUI Wei, TAO Chao, LIU Xiaojun. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator[J]. Optics express, 2017, 25(19): 22840.
[15] RAJENDRAN P, SHARMA A, PRAMANIK M. Photoacoustic imaging aided with deep learning: a review[J]. Biomedical engineering letters, 2022, 12(2): 155–173.
[16] MANWAR R, ZAFAR M, XU Qiuyun. Signal and image processing in biomedical photoacoustic imaging: a review[J]. Optics, 2020, 2(1): 1–24.
[17] FARNIA P, MOHAMMADI M, NAJAFZADEH E, et al. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging[J]. Biomedical physics & engineering express, 2020, 6(4): 045019.
[18] SUN Zheng, WANG Xinyu, YAN Xiangyang. An iterative gradient convolutional neural network and its application in endoscopic photoacoustic image formation from incomplete acoustic measurement[J]. Neural computing and applications, 2021, 33(14): 8555–8574.
[19] JOSEPH F K, ARORA A, KANCHARLA P, et al. Generative adversarial network-based photoacoustic image reconstruction from bandlimited and limited-view data[C]//Proc SPIE 11642, Photons Plus Ultrasound: Imaging and Sensing. [S.l.: s.n.], 2021: 208-213.
[20] VU T, LI Mucong, HUMAYUN H, et al. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer[J]. Experimental biology and medicine, 2020, 245(7): 597–605.
[21] SUN Zheng, YAN Xiangyang. A deep learning method for limited-view intravascular photoacoustic image reconstruction[J]. Journal of medical imaging and health informatics, 2020, 10(11): 2707–2713.
[22] GODEFROY G, ARNAL B, BOSSY E. Compensating for visibility artefacts in photoacoustic imaging with a deep learning approach providing prediction uncertainties[J]. Photoacoustics, 2021, 21: 100218.
[23] 宋宜昌, 邢达. 用蒙特卡罗方法模拟光在多层组织中的吸收特性[J]. 激光生物学报, 2002, 11(1): 10–14
[24] TREEBY B E, COX B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J]. The journal of the acoustical society of America, 2010, 127(5): 2741–2748.
[25] LA RIVI?RE P J, ZHANG Jin, ANASTASIO M A. Image reconstruction in optoacoustic tomography for dispersive acoustic media[J]. Optics letters, 2006, 31(6): 781.
[26] MOHAMMADI L, BEHNAM H, TAVAKKOLI J, et al. Skull’s photoacoustic attenuation and dispersion modeling with deterministic ray-tracing: towards real-time aberration correction[J]. Sensors, 2019, 19(2): 345.
[27] 齐梦雨, 严壮志, 赵丽丽. 基于有限元和k空间伪谱法的光声成像仿真平台[J]. 中国医疗器械杂志, 2018, 42(6): 413–416,427
QI Mengyu, YAN Zhuangzhi, ZHAO Lili. Simulation platform of photoacoustic imaging based on finite element and k-space pseudospectral method[J]. Chinese journal of medical instrumentation, 2018, 42(6): 413–416,427
[28] ADLER J, ?KTEM O. Solving ill-posed inverse problems using iterative deep neural networks[J]. Inverse problems, 2017, 33(12): 124007.
[29] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22)[2022-01-01]. https://arxiv.org/abs/1412.6980.pdf.
[30] TREEBY B E, COX B T. K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of biomedical optics, 2010, 15(2): 021314.
相似文献/References:
[1]谭营,王军.手指静脉身份识别技术最新进展[J].智能系统学报,2011,6(6):471.
 TAN Ying,WANG Jun.Recent advances in finger vein based biometric techniques[J].CAAI Transactions on Intelligent Systems,2011,6():471.
[2]谌琛,李卫军,陈亮,等.一种自适应的仿生图像增强方法:LDRF算法[J].智能系统学报,2012,7(5):404.
 CHEN Chen,LI Weijun,CHEN Liang,et al.An adaptive biomimetic image processing method: LDRF algorithm[J].CAAI Transactions on Intelligent Systems,2012,7():404.
[3]赵志辉,赵瑞珍,岑翼刚,等.基于稀疏表示与线性回归的图像快速超分辨率重建[J].智能系统学报,2017,12(1):8.[doi:10.11992/tis.201603039]
 ZHAO Zhihui,ZHAO Ruizhen,CEN Yigang,et al.Rapid super-resolution image reconstruction based on sparse representation and linear regression[J].CAAI Transactions on Intelligent Systems,2017,12():8.[doi:10.11992/tis.201603039]
[4]曹锦纲,李金华,郑顾平.基于生成式对抗网络的道路交通模糊图像增强[J].智能系统学报,2020,15(3):491.[doi:10.11992/tis.201903041]
 CAO Jin gang,LI Jinhua,ZHENG Guping.Enhancement of blurred road-traffic images based on generative adversarial network[J].CAAI Transactions on Intelligent Systems,2020,15():491.[doi:10.11992/tis.201903041]

备注/Memo

收稿日期:2022-12-23。
基金项目:国家自然科学基金项目(62071181).
作者简介:孙美晨,硕士研究生,主要研究方向为深度学习和图像重建。E-mail: 329013393@qq.com;孙正,教授,主要研究方向为医学影像技术、多模态成像技术、图像重建和反问题求解。主持国家自然科学基金项目、中国博士后科学基金项目等10余项,授权发明专利30余项,出版学术专著2部,发表学术论文100余篇。E-mail:sunzheng@ncepu.edu.cn;候英飒,硕士研究生,主要研究方向为深度学习和光声图像重建技术。E-mail:houyingsa@163.com
通讯作者:孙正. E-mail:sunzheng@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com