[1]蒲兴成,冼文杰,聂壮.基于改进蚁群优化算法的AUV三维路径规划[J].智能系统学报,2024,19(3):627-634.[doi:10.11992/tis.202211038]
 PU Xingcheng,XIAN Wenjie,NIE Zhuang.Three-dimensional path planning of AUV based on improved ant colony optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(3):627-634.[doi:10.11992/tis.202211038]
点击复制

基于改进蚁群优化算法的AUV三维路径规划

参考文献/References:
[1] 吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31
WU Yousheng, ZHAO Yiyu, LANG Shuyan, et al. Development of autonomous underwater vehicles technology[J]. Strategic study of CAE, 2020, 22(6): 26–31
[2] CONSTABLE S, KOWALCZYK P, BLOOMER S. Measuring marine self-potential using an autonomous underwater vehicle[J]. Geophysical journal international, 2018, 215(1): 49–60.
[3] 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746–2756
FENG Xisheng, LI Yiping, XU Huixi, et al. Development of deep-sea autonomous underwater vehicle and its applications in resource survey[J]. The Chinese journal of nonferrous metals, 2021, 31(10): 2746–2756
[4] WU Jiehong, SONG Chengxin, MA Jian, et al. Reinforcement learning and particle swarm optimization supporting real-time rescue assignments for multiple autonomous underwater vehicles[J]. IEEE transactions on intelligent transportation systems, 2022, 23(7): 6807–6820.
[5] 钱东, 赵江, 杨芸. 军用UUV发展方向与趋势(上): 美军用无人系统发展规划分析解读[J]. 水下无人系统学报, 2017, 25(2): 1–30
QIAN Dong, ZHAO Jiang, YANG Yun. Development trend of military UUV(Ⅰ): a review of U. S. military unmanned system development plan[J]. Journal of unmanned undersea systems, 2017, 25(2): 1–30
[6] 刘成菊, 韩俊强, 安康. 基于改进RRT算法的RoboCup机器人动态路径规划[J]. 机器人, 2017, 39(1): 8–15
LIU Chengju, HAN Junqiang, AN Kang. Dynamic path planning based on an improved RRT algorithm for RoboCup robot[J]. Robot, 2017, 39(1): 8–15
[7] 张伟民, 付仕雄. 基于改进RRT*算法的移动机器人路径规划[J]. 华中科技大学学报(自然科学版), 2021, 49(1): 31–36
ZHANG Weimin, FU Shixiong. Mobile robot path planning based on improved RRT* algorithm[J]. Journal of Huazhong university of science and technology (natural science edition), 2021, 49(1): 31–36
[8] LIU Chenguang, MAO Qingzhou, CHU Xiumin, et al. An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied sciences, 2019, 9(6): 1057.
[9] 赵晓, 王铮, 黄程侃, 等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903–910
ZHAO Xiao, WANG Zheng, HUANG Chengkan, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903–910
[10] 史久根, 刘春霞, 席海强. CA模型下的改进D*路径规划算法[J]. 电子测量与仪器学报, 2016, 30(1): 30–37
SHI Jiugen, LIU Chunxia, XI Haiqiang. Improved D* path planning algorithm based on CA model[J]. Journal of electronic measurement and instrumentation, 2016, 30(1): 30–37
[11] 朱蟋蟋, 孙兵, 朱大奇. 基于改进D*算法的AUV三维动态路径规划[J]. 控制工程, 2021, 28(4): 736–743
ZHU Xixi, SUN Bing, ZHU Daqi. Three-dimensional dynamic path planning of AUV based on improved D* algorithm[J]. Control engineering of China, 2021, 28(4): 736–743
[12] 姜辰凯, 李智, 盘书宝, 等. 基于改进Dijkstra算法的AGVs无碰撞路径规划[J]. 计算机科学, 2020, 47(8): 272–277
JIANG Chenkai, LI Zhi, PAN Shubao, et al. Collision-free path planning of AGVs based on improved Dijkstra algorithm[J]. Computer science, 2020, 47(8): 272–277
[13] 陈亚琳, 庄丽阳, 朱龙彪, 等. 基于改进Dijkstra算法的泊车系统路径规划研究[J]. 现代制造工程, 2017(8): 63–67
CHEN Yalin, ZHUANG Liyang, ZHU Longbiao, et al. Research on path planing of parking system based on the improved Dijkstra algorithm[J]. Modern manufacturing engineering, 2017(8): 63–67
[14] DORIGO M, MANIEZZO V, COLORNI A. Ant system: An autocatalytic optimizing process technical report 91-016[J]. Clustering, 1991, 3(12): 340.
[15] HAN Zhenhua, LIU Shugui, YU Fei, et al. A 3D measuring path planning strategy for intelligent CMMs based on an improved ant colony algorithm[J]. The international journal of advanced manufacturing technology, 2017, 93(1): 1487–1497.
[16] 方群, 徐青. 基于改进粒子群算法的无人机三维航迹规划[J]. 西北工业大学学报, 2017, 35(1): 66–73
FANG Qun, XU Qing. 3D route planning for UAV based on improved PSO algorithm[J]. Journal of Northwestern Polytechnical University, 2017, 35(1): 66–73
[17] XIA Shuang, ZHANG Xiangyin. Constrained path planning for unmanned aerial vehicle in 3D terrain using modified multi-objective particle swarm optimization[J]. Actuators, 2021, 10(10): 255.
[18] LEE J, KIM D W. An effective initialization method for genetic algorithm-based robot path planning using a directed acyclic graph[J]. Information sciences, 2016, 332: 1–18.
[19] 贺娇, 谭代伦. 基于视野范围和遗传算法的三维地形路径规划[J]. 计算机工程与应用, 2021, 57(15): 279–285
HE Jiao, TAN Dailun. Three-dimensional terrain path planning based on sight range and genetic algorithm[J]. Computer engineering and applications, 2021, 57(15): 279–285
[20] HAN Zengliang, CHEN Mou, SHAO Shuyi, et al. Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning[J]. Aerospace science and technology, 2022, 122: 107374.
[21] XU Feiyi, LI Haolun, PUN C M, et al. A new global best guided artificial bee colony algorithm with application in robot path planning[J]. Applied soft computing, 2020, 88: 106037.
[22] 魏江, 王建军, 王健, 等. 基于改进蚁群算法的三维航迹规划[J]. 计算机工程与应用, 2020, 56(17): 217–223
WEI Jiang, WANG Jianjun, WANG Jian, et al. 3D path planning based on improved ant colony algorithm[J]. Computer engineering and applications, 2020, 56(17): 217–223
[23] GAO Wenxiang, TANG Qing, YE Beifa, et al. An enhanced heuristic ant colony optimization for mobile robot path planning[J]. Soft computing, 2020, 24(8): 6139–6150.
[24] WANG Lanfei, KAN Jiangming, GUO Jun, et al. 3D path planning for the ground robot with improved ant colony optimization[J]. Sensors, 2019, 19(4): 815.
[25] PU Xingcheng, XIONG Chaowen, JI Lianghao, et al. 3D path planning for a robot based on improved ant colony algorithm[J]. Evolutionary intelligence, 2024, 17(1): 55–65.
相似文献/References:
[1]黄彦文,曹其新.RoboCup比赛环境下足球机器人路径规划研究[J].智能系统学报,2007,2(4):52.
 HUANG Yan-wen,CAO Qin-xin.Path planning for robot soccer in the RoboCup environment[J].CAAI Transactions on Intelligent Systems,2007,2():52.
[2]秦世引,高书征.面向救援任务的地面移动机器人路径规划[J].智能系统学报,2009,4(5):414.[doi:10.3969/j.issn.1673-4785.2009.05.005]
 QIN Shi-yin,GAO Shu-zhen.Path planning for mobile rescue robots in disaster areas with complex environments[J].CAAI Transactions on Intelligent Systems,2009,4():414.[doi:10.3969/j.issn.1673-4785.2009.05.005]
[3]曹卫华,吴净斌,吴 敏,等.无路标环境下遥操作机器人SLAM系统[J].智能系统学报,2010,5(3):240.
 CAO Wei-hua,WU Jing-bin,WU Min,et al.A system for telerobotics in environments without landmarks[J].CAAI Transactions on Intelligent Systems,2010,5():240.
[4]薛英花,田国会,吴 皓,等.智能空间中的服务机器人路径规划[J].智能系统学报,2010,5(3):260.
 XUE Ying-hua,TIAN Guo-hui,WU Hao,et al.Path planning for service robots in an intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5():260.
[5]黄晓丹,王粉花,王志良.情感决策的智能家居虚拟人路径规划[J].智能系统学报,2010,5(4):292.
 HUANG Xiao-dan,WANG Fen-hua,WANG Zhi-liang.Using affective decisionmaking for the path planning of virtual humans in a smart home[J].CAAI Transactions on Intelligent Systems,2010,5():292.
[6]唐小勇,于 飞,潘洪悦.改进粒子群算法的潜器导航规划[J].智能系统学报,2010,5(5):443.[doi:10.3969/j.issn.1673-4785.2010.05.011]
 TANG Xiao-yong,YU Fei,PAN Hong-yue.Submersible path-planning based on an improved PSO[J].CAAI Transactions on Intelligent Systems,2010,5():443.[doi:10.3969/j.issn.1673-4785.2010.05.011]
[7]夏琳琳,张健沛,初妍.计算智能在移动机器人路径规划中的应用综述[J].智能系统学报,2011,6(2):160.
 XIA Linlin,ZHANG Jianpei,CHU Yan.An application survey on computational intelligence for path planning of mobile robots[J].CAAI Transactions on Intelligent Systems,2011,6():160.
[8]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(5):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6():456.
[9]肖国宝,严宣辉.一种基于改进Theta *的机器人路径规划算法[J].智能系统学报,2013,8(1):58.[doi:10.3969/j.issn.1673-4785.201208032]
 XIAO Guobao,YAN Xuanhui.A path planning algorithm based on improved Theta * for mobile robot[J].CAAI Transactions on Intelligent Systems,2013,8():58.[doi:10.3969/j.issn.1673-4785.201208032]
[10]杨茂,田彦涛.复杂环境下多机器人觅食路径规划与控制[J].智能系统学报,2013,8(2):162.[doi:10.3969/j.issn.1673-4785.201208022]
 YANG Mao,TIAN Yantao.Foraging path planning and control for multi-robot in complex environment[J].CAAI Transactions on Intelligent Systems,2013,8():162.[doi:10.3969/j.issn.1673-4785.201208022]
[11]蒲兴成,宋欣琳.分组教学蚁群算法改进及其在机器人路径规划中应用[J].智能系统学报,2022,17(4):764.[doi:10.11992/tis.202108020]
 PU Xingcheng,SONG Xinlin.Improvement of ant colony algorithm in group teaching and its application in robot path planning[J].CAAI Transactions on Intelligent Systems,2022,17():764.[doi:10.11992/tis.202108020]

备注/Memo

收稿日期:2022-11-25。
基金项目:国家自然科学基金项目(61876200);安徽省质量工程项目(2022cxtd162);安徽省自然科学基金项目(2008085MG227);铜陵学院人才引进项目(R23010);安徽省重点研究与开发计划项目(202004a05020010);重庆市教委项目(KJZD-M202001901);重庆市科委项目(cstc2020jcyj-msxmX0895)
作者简介:蒲兴成,教授,博士,主要研究方向为多智能体系统、群智能算法和随机系统。主持和参与市级以上科研项目10余项,以第一作者发表学术论文60余篇,出版学术著作和教材各2部。E-mail:1662598286@qq.com;冼文杰,硕士研究生,主要研究方向为群智能算法。E-mail:786728790@qq.com;聂壮,硕士研究生,主要研究方向为群智能算法。E-mail:n3116369@gmail.com
通讯作者:蒲兴成. E-mail:1662598286@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com