[1]高海洋,张明川,葛泉波,等.基于点集匹配的缺陷样本图像生成方法[J].智能系统学报,2023,18(5):1030-1038.[doi:10.11992/tis.202209028]
 GAO Haiyang,ZHANG Mingchuan,GE Quanbo,et al.Method of defect sample image generation based on point set matching[J].CAAI Transactions on Intelligent Systems,2023,18(5):1030-1038.[doi:10.11992/tis.202209028]
点击复制

基于点集匹配的缺陷样本图像生成方法

参考文献/References:
[1] 于重重, 萨良兵, 马先钦, 等. 基于度量学习的小样本零器件表面缺陷检测[J]. 仪器仪表学报, 2020, 41(7): 214-223
YU Chongchong, SA Liangbing, MA Xianqin, et al. Few-shot parts surface defect detection based on the metric learning[J]. Chinese journal of scientific instrument, 2020, 41(7): 214-223
[2] CHEN Yajun, DING Yuanyuan, ZHAO Fan, et al. Surface defect detection methods for industrial products: a review[J]. Applied sciences, 2021, 11(16): 7657.
[3] GAO Yiping, LI Xinyu, WANG X V, et al. A review on recent advances in vision-based defect recognition towards industrial intelligence[J]. Journal of manufacturing systems, 2022, 62: 753-766.
[4] 胡文杰, 吴晓波, 李波, 等. 基于Self-Attention的单样本ConSinGAN模型的工业缺陷样本图像生成[J]. 中南民族大学学报(自然科学版), 2022, 41(3): 356-364
HU Wenjie, WU Xiaobo, LI Bo, et al. Single sample image generation of industrial defect samples based on self-attention ConSinGAN[J]. Journal of south-central Minzu university (natural science edition), 2022, 41(3): 356-364
[5] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. Advances in neural information processing systems, 2014: 2002-2009.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the acm, 2020, 63(11): 139-144.
[7] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000?6010.
[8] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
[9] SHI Jie, WU Chenfei, LIANG Jian, et al. Divae: Photorealistic images synthesis with denoising diffusion decoder[EB/OL].(2022?06?01)[2022?09?10]. https://arxiv.org/abs/2206.00386.
[10] RAZAVI A, VAN DEN OORD A, VINYALS O. Generating diverse high-fidelity images with vq-vae-2[J]. Advances in Neural Information Processing Systems, 2019: 14866-14876.
[11] LIU Mingyu, BREUEL T, KAUTZ J. Unsupervised image-to-image translation networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 700?708.
[12] 余艳杰, 孙嘉琪, 葛思擘, 等. CycleGAN-SN: 结合谱归一化和CycleGAN的图像风格化算法[J]. 西安交通大学学报, 2020, 54(5): 133-141
YU Yanjie, SUN Jiaqi, GE Siqing. CycleGAN-SN: image stylization algorithm combining spectral normalization and CycleGAN[J]. Journal of Xi’an Jiaotong University, 2020, 54(5): 133-141
[13] 叶亚男, 迟静, 于志平, 等. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149
YE Yanan, CHI Jing, YU Zhiping, et al. Expression animation synthesis based on improved CycleGan model and region segmentation[J]. Computer science, 2020, 47(9): 142-149
[14] K?KSAL A, LU Shijian. RF-GAN: a light and reconfigurable network for unpaired image-to-image translation[C]//ISHIKAWA H, LIU C L, PAJDLA T, et al. Asian Conference on Computer Vision. Cham: Springer, 2021: 542?559.
[15] YEH R A, CHEN Chen, LIM T Y, et al. Semantic image inpainting with deep generative models[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6882?6890.
[16] YU Jiahui, LIN Zhe, YANG Jimei, et al. Generative image inpainting with contextual attention[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5505?5514.
[17] 崔克彬, 潘锋. 用于绝缘子故障检测的CycleGAN小样本库扩增方法研究[J]. 计算机工程与科学, 2022, 44(3): 509-515
CUI Kebin, PAN Feng. A CycleGAN small sample library amplification method for faulty insulator detection[J]. Computer engineering & science, 2022, 44(3): 509-515
[18] LIU Zirong, LAI Zhihui, GAO Can. Multi-scale defective samples synthesis for surface defect detection[C]//IEEE 7th International Conference on Cloud Computing and Intelligent Systems. Xi’an: IEEE, 2022: 224?229.
[19] SINGH R, GARG R, PATEL N S, et al. Generative adversarial networks for synthetic defect generation in assembly and test manufacturing[C]//31st Annual SEMI Advanced Semiconductor Manufacturing Conference. Saratoga Springs: IEEE, 2020: 1?5.
[20] YANG Benyi, LIU Zhenyu, DUAN Guifang, et al. Mask2Defect: a prior knowledge-based data augmentation method for metal surface defect inspection[J]. IEEE transactions on industrial informatics, 2022, 18(10): 6743-6755.
[21] CHOI J, KIM S, JEONG Y, et al. ILVR: Conditioning method for denoising diffusion probabilistic models[EB/OL]. (2021-08-06)[2022-09-10] . https://arxiv.org/abs/2108.02938.
[22] LUGMAYR A, DANELLJAN M, ROMERO A, et al. RePaint: inpainting using denoising diffusion probabilistic models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11451?11461.
[23] MYRONENKO A, SONG Xubo. Point set registration: coherent point drift[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2262-2275.
[24] TANG Te, WANG Changhao, TOMIZUKA M. A framework for manipulating deformable linear objects by coherent point drift[J]. IEEE robotics and automation letters, 2018, 3(4): 3426-3433.
[25] SOTIRAS A, DAVATZIKOS C, PARAGIOS N. Deformable medical image registration: a survey[J]. IEEE transactions on medical imaging, 2013, 32(7): 1153-1190.
[26] MA Jiayi, ZHOU Huabing, ZHAO Ji, et al. Robust feature matching for remote sensing image registration via locally linear transforming[J]. IEEE transactions on geoscience and remote sensing, 2015, 53(12): 6469-6481.
[27] XU Xingpeng, MATKOWSKI W M, KONG A W K. A portrait photo-to-tattoo transform based on digital tattooing[J]. Multimedia tools and applications, 2020, 79(33): 24367-24392.
[28] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9584?9592.
相似文献/References:
[1]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(1):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7():75.
[2]逄增治,郑修楠,李金屏.全钢子午线轮胎X光图像的缺陷检测研究现状[J].智能系统学报,2019,14(4):793.[doi:10.11992/tis.201806014]
 PANG Zengzhi,ZHENG Xiunan,LI Jinping.Research status of defect detection in X-ray images of all-steel radial tires[J].CAAI Transactions on Intelligent Systems,2019,14():793.[doi:10.11992/tis.201806014]
[3]王凯旋,任福继,倪红军,等.面向电力设备红外图像的温度值识别算法[J].智能系统学报,2022,17(3):617.[doi:10.11992/tis.202105043]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Temperature value recognition algorithm for the infrared image of power equipment[J].CAAI Transactions on Intelligent Systems,2022,17():617.[doi:10.11992/tis.202105043]
[4]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18():858.[doi:10.11992/tis.202201009]
[5]王延春秋,葛泉波,刘华平.石板材表面缺陷检测的无监督学习方法[J].智能系统学报,2023,18(6):1344.[doi:10.11992/tis.202212006]
 WANG Yanchunqiu,GE Quanbo,LIU Huaping.Unsupervised learning method for surface defect detection of slate materials[J].CAAI Transactions on Intelligent Systems,2023,18():1344.[doi:10.11992/tis.202212006]
[6]吴瑞林,葛泉波,刘华平.基于YOLOX的类增量印刷电路板缺陷检测方法[J].智能系统学报,2024,19(4):1061.[doi:10.11992/tis.202309044]
 WU Ruilin,GE Quanbo,LIU Huaping.Class-incremental printed circuit board defect detection method based on YOLOX[J].CAAI Transactions on Intelligent Systems,2024,19():1061.[doi:10.11992/tis.202309044]

备注/Memo

收稿日期:2022-9-15。
基金项目:国家自然科学基金重点项目(62033010);中原科技创新领军人才项目(224200510004).
作者简介:高海洋,硕士研究生,主要研究方向为图像生成、缺陷检测;张明川,教授,博士生导师,主要研究方向为新型网络、工业互联网、智能信息处理、智慧医疗、机器学习。发表学术论文60余篇;刘华平,教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,吴文俊人工智能科学技术奖获得者,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项。发表 学术论文100余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com