[1]高海洋,张明川,葛泉波,等.基于点集匹配的缺陷样本图像生成方法[J].智能系统学报,2023,18(5):1030-1038.[doi:10.11992/tis.202209028]
GAO Haiyang,ZHANG Mingchuan,GE Quanbo,et al.Method of defect sample image generation based on point set matching[J].CAAI Transactions on Intelligent Systems,2023,18(5):1030-1038.[doi:10.11992/tis.202209028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
18
期数:
2023年第5期
页码:
1030-1038
栏目:
学术论文—机器学习
出版日期:
2023-09-05
- Title:
-
Method of defect sample image generation based on point set matching
- 作者:
-
高海洋1, 张明川1, 葛泉波2, 刘华平3
-
1. 河南科技大学 信息工程学院, 河南 洛阳 471023;
2. 南京信息工程大学 自动化学院, 江苏 南京 210044;
3. 清华大学 计算机科学与技术系, 北京 100084
- Author(s):
-
GAO Haiyang1, ZHANG Mingchuan1, GE Quanbo2, LIU Huaping3
-
1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China;
2. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
工业; 缺陷检测; 小样本问题; 点集匹配; 样本扩充; 缺陷样本生成; 有效训练; 循环生成对抗网络模型; 矢量化变分自动编码器
- Keywords:
-
industrial; defect detection; small-sample problem; point set matching; sample expansion; generation of the defect sample; effective training; Cycle GAN model; VQ-VAE
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.202209028
- 摘要:
-
针对工业缺陷检测中存在的由产品次品率过低、产品迭代更新过快、缺陷种类难以覆盖全部以及缺陷样本高质量标注难度较高导致的小样本问题,使用基于点集匹配的缺陷样本图像生成方法来对缺陷数据进行扩充。将缺陷部位从多特征角度进行变换,使用单张样本进行扩充得到不同特征的缺陷图像,解决小样本条件下深度学习方法难以生成高质量缺陷图像的问题。通过图像评估与实验验证,该方法生成的图像具有更好的视觉效果,并且对缺陷与分割模型有着高效的提升。该方法可应用于样本较少的深度学习模型训练过程中,达到扩充样本提高训练效果的目的。
- Abstract:
-
The paper presents a novel approach for generating defect sample images using point set matching, which addresses the challenges posed by small-sample in industrial defect detection. These challenges arise due to low defective rates of products, rapid iterative updating of products, limited coverage of defect types, and difficulty in obtaining high-quality labeled defect samples. The proposed method transforms defects from a multifeature perspective and applies a single-sample expansion technique to generate defect images with diverse characteristics. This method solves the problem of the difficult generation of a high-quality defect image by deep learning under small-sample conditions. Through image evaluation and experimental verification, this method can produce images with superior visual effects and can effectively improve defect segmentation and detection. This method can be applied to the training process of the deep learning model with few samples for sample expansion and improvement of the training effect.
备注/Memo
收稿日期:2022-9-15。
基金项目:国家自然科学基金重点项目(62033010);中原科技创新领军人才项目(224200510004).
作者简介:高海洋,硕士研究生,主要研究方向为图像生成、缺陷检测;张明川,教授,博士生导师,主要研究方向为新型网络、工业互联网、智能信息处理、智慧医疗、机器学习。发表学术论文60余篇;刘华平,教授,博士生导师,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,吴文俊人工智能科学技术奖获得者,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项。发表 学术论文100余篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01