[1]代金利,曹江涛,姬晓飞.交互关系超图卷积模型的双人交互行为识别[J].智能系统学报,2024,19(2):316-324.[doi:10.11992/tis.202208001]
 DAI Jinli,CAO Jiangtao,JI Xiaofei.Two-person interaction recognition based on the interactive relationship hypergraph convolution network model[J].CAAI Transactions on Intelligent Systems,2024,19(2):316-324.[doi:10.11992/tis.202208001]
点击复制

交互关系超图卷积模型的双人交互行为识别

参考文献/References:
[1] 吴联世, 夏利民, 罗大庸. 人的交互行为识别与理解研究综述[J]. 计算机应用与软件, 2011, 28(11): 60–63
WU Lianshi, XIA Limin, LUO Dayong. Survey on human interactive behaviour recognition and comprehension[J]. Computer applications and software, 2011, 28(11): 60–63
[2] WANG Pichao, LI Wanqing, OGUNBONA P, et al. RGB-D-based human motion recognition with deep learning: a survey[J]. Computer vision and image understanding, 2018, 171: 118–139.
[3] BARADEL F, WOLF C, MILLE J, et al. Glimpse clouds: human activity recognition from unstructured feature points[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 469-478.
[4] YUN K, HONORIO J, CHATTOPADHYAY D, et al. Two-person interaction detection using body-pose features and multiple instance learning[C]//2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence: IEEE, 2012: 28-35.
[5] 姬晓飞, 谢旋, 任艳. 深度学习的双人交互行为识别与预测算法研究[J]. 智能系统学报, 2020, 15(3): 484–490
JI Xiaofei, XIE Xuan, REN Yan. Research on two-person interaction Recognition and Prediction Algorithm based on Deep Learning[J]. CAAI transactions on intelligent systems, 2020, 15(3): 484–490
[6] HUYNH-THE T, BANOS O, LE B V, et al. PAM-based flexible generative topic model for 3D interactive activity recognition[C]//2015 International Conference on Advanced Technologies for Communications. Ho Chi Minh City: IEEE, 2016: 117-122.
[7] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. (2014-09-18)[2022-01-01]. https://arxiv.org/abs/1409.2329.pdf.
[8] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324.
[9] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].(2017-09-09)[2022-01-01]. https://arxiv.org/abs/1607.07043.pdf.
[10] LIU Jun, SHAHROUDY A, XU Dong, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[EB/OL]. (2016-07-24)[2022-01-01]. https://arxiv.org/abs/1607.07043.pdf.
[11] CHOUTAS V, WEINZAEPFEL P, REVAUD J, et al. PoTion: pose MoTion representation for action recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7024-7033.
[12] YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL]. (2018-01-25)[2022-01-01]. https://arxiv.org/abs/1801.07455.
[13] CHENG Ke, ZHANG Yifan, HE Xiangyu, et al. Skeleton-based action recognition with shift graph convolutional network[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 180-189.
[14] SONG Yifan, ZHANG Zhang, SHAN Caifeng, et al. Richly activated graph convolutional network for robust skeleton-based action recognition[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(5): 1915–1925.
[15] 刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43(6): 1789–1802
LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of electronics & information technology, 2021, 43(6): 1789–1802
[16] LI Maosen, CHEN Siheng, CHEN Xu, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 3590-3598.
[17] 成科扬, 吴金霞, 王文杉, 等. 融合时空图卷积的多人交互行为识别[J]. 中国图象图形学报, 2021, 26(7): 1681–1691
CHENG Keyang, WU Jinxia, WANG Wenshan, et al. Multi-person interaction action recognition based on spatio-temporal graph convolution[J]. Journal of image and graphics, 2021, 26(7): 1681–1691
[18] WU Jianchao, WANG Limin, WANG Li, et al. Learning actor relation graphs for group activity recognition[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9956-9966.
[19] CHEN Yuxin, ZHANG Ziqi, YUAN Chunfeng, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 13339-13348.
[20] LEE J, LEE M, LEE D, et al. Hierarchically decomposed graph convolutional networks for skeleton-based action recognition[EB/OL]. (2022-12-25)[2023-01-01]. https://arxiv.org/abs/2208.10741.pdf.
[21] ZHOU D, HUANG J, SCH?LKOPF B. Learning with hypergraphs: clustering, classification, and embedding[C]//International on Neural Information Processing Systems. Vancouver MIT Press, 2006: 1601-1608.
[22] ZHOU Dengyong, HUANG Jiayuan, SCH?LKOPF B. Learning from labeled and unlabeled data on a directed graph[C]//Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005: 1036-1043.
[23] YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: a new method of training graph convolutional networks on hypergraphs[EB/OL]. (2018-09-07)[2022-01-01]. https://arxiv.org/abs/1809.02589.pdf.
[24] SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB D: a large scale dataset for 3D human activity analysis[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1010-1019.
[25] KE Qiuhong, AN Senjian, BENNAMOUN M, et al. SkeletonNet: mining deep part features for 3-D action recognition[J]. IEEE signal processing letters, 2017, 24(6): 731–735.
相似文献/References:
[1]梅雪,胡石,许松松,等.基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用[J].智能系统学报,2012,7(6):512.
 MEI Xue,HU Shi,XU Songsong,et al.Multi scale feature based double layer HMM and its application in behavior recognition[J].CAAI Transactions on Intelligent Systems,2012,7():512.
[2]姬晓飞,谢旋,任艳.深度学习的双人交互行为识别与预测算法研究[J].智能系统学报,2020,15(3):484.[doi:10.11992/tis.201812029]
 JI Xiaofei,XIE Xuan,REN Yan.Human interaction recognition and prediction algorithm based on deep learning[J].CAAI Transactions on Intelligent Systems,2020,15():484.[doi:10.11992/tis.201812029]
[3]刘董经典,孟雪纯,张紫欣,等.一种基于2D时空信息提取的行为识别算法[J].智能系统学报,2020,15(5):900.[doi:10.11992/tis.201906054]
 LIU Dongjingdian,MENG Xuechun,ZHANG Zixin,et al.A behavioral recognition algorithm based on 2D spatiotemporal information extraction[J].CAAI Transactions on Intelligent Systems,2020,15():900.[doi:10.11992/tis.201906054]
[4]申天啸,韩怡园,韩冰,等.基于人类视觉皮层双通道模型的驾驶员眼动行为识别[J].智能系统学报,2022,17(1):41.[doi:10.11992/tis.202106051]
 SHEN Tianxiao,HAN Yiyuan,HAN Bing,et al.Recognition of driver’s eye movement based on the human visual cortex two-stream model[J].CAAI Transactions on Intelligent Systems,2022,17():41.[doi:10.11992/tis.202106051]

备注/Memo

收稿日期:2022-08-01。
基金项目:国家自然科学基金项目(61673199);辽宁省科技公益研究基金项目(2016002006).
作者简介:代金利,硕士研究生,主要研究方向为计算机视觉、图像处理和模式识别。E-mail:daijinli19980904@163.com;曹江涛,教授,博士,主要研究方向为智能方法及其应用、视频分析与处理。主持国家自然科学基金项目1 项、辽宁省自然科学基金项目 1 项。参与编著英文专著 2 部,发表学术论文 50 余篇。E-mail:jtcao@lnpu.edu.cn;姬晓飞,副教授,博士,主要研究方向为视频分析与处理、模式识别理论。主持国家自然科学基金项目1项、辽宁省自然科学基金项目1项。参与编著英文专著2部,发表学术论文40余篇。E-mail:jixiaofei7804@126.com
通讯作者:姬晓飞. E-mail:jixiaofei7804@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com