[1]胡峰,杨新瑞,汤成富,等.基于自适应损失函数的句子级远程监督关系抽取[J].智能系统学报,2024,19(3):697-706.[doi:10.11992/tis.202205034]
 HU Feng,YANG Xinrui,TANG Chengfu,et al.Sentence-level distant supervision relation extraction based on self-adaptive loss function[J].CAAI Transactions on Intelligent Systems,2024,19(3):697-706.[doi:10.11992/tis.202205034]
点击复制

基于自适应损失函数的句子级远程监督关系抽取

参考文献/References:
[1] 张涛, 贾真, 李天瑞, 等. 基于知识库的开放领域问答系统[J]. 智能系统学报, 2018, 13(4): 557–563
ZHANG Tao, JIA Zhen, LI Tianrui, et al. Open-domain question-answering system based on large-scale knowledge base[J]. CAAI transactions on intelligent systems, 2018, 13(4): 557–563
[2] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Conference of Association for Computational Linguistics. Stroudsburg: ACL, 2009: 1003–1011.
[3] RIEDEL S, YAO Limin, MCCALLUM A. Modeling relations and their mentions without labeled text[C]//Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in Databases-Volume Part III. New York: ACM, 2010: 148–163.
[4] YAO Xuchen, VAN DURME B. Information extraction over structured data: question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2014: 956–966.
[5] XU Kun, REDDY S, FENG Yansong, et al. Question answering on freebase via relation extraction and textual evidence[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2016: 2326–2336.
[6] JIA Wei, DAI Dai, XIAO Xinyan, et al. ARNOR: attention regularization based noise reduction for distant supervision relation classification[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2019: 1399–1408.
[7] FENG Jun, HUANG Minlie, ZHAO Li, et al. Reinforcement learning for relation classification from noisy data[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018, 32(1): 5779–5786.
[8] MA Ruotian, GUI Tao, LI Linyang, et al. SENT: sentence-level distant relation extraction via negative training[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2021: 6201–6213.
[9] KIM Y, YIM J, YUN J, et al. NLNL: negative learning for noisy labels[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 101–110.
[10] HOFFMANN R, ZHANG Congle, LING Xiao, et al. Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Portland: ACM, 2011: 541–550.
[11] SURDEANU M, TIBSHIRANI J, NALLAPATI R, et al. Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island: ACM, 2012: 455–465.
[12] LIN Yankai, SHEN Shiqi, LIU Zhiyuan, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2016: 2124–2133.
[13] YE Zhixiu, LING Zhenhua. Distant supervision relation extraction with intra-bag and inter-bag attentions[C]//Proceedings of the 2019 Conference of the North. Stroudsburg: Association for Computational Linguistics, 2019: 2810–2819.
[14] LI Yang, LONG Guodong, SHEN Tao, et al. Self-attention enhanced selective gate with entity-aware embedding for distantly supervised relation extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020, 34(5): 8269–8276.
[15] LIU Tianyu, WANG Kexiang, CHANG Baobao, et al. A soft-label method for noise-tolerant distantly supervised relation extraction[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 1790–1795.
[16] QIN Pengda, XU Weiran, WANG W Y. Robust distant supervision relation extraction via deep reinforcement learning[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2018: 2137–2147.
[17] SHANG Yuming, HUANG Heyan, MAO Xianling, et al. Are noisy sentences useless for distant supervised relation extraction? [C]//Proceedings of the AAAI Conference on Artificial Intelligen. New York: AAAI, 2020, 34(5): 8799–8806.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
[19] TAN Qingyu, HE Ruidan, BING Lidong, et al. Document-level relation extraction with adaptive focal loss and knowledge distillation[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: Association for Computational Linguistics, 2022: 1–10.
[20] 彭正阳, 吕立, 于碧辉. 基于动态损失函数的远程监督关系抽取[J]. 小型微型计算机系统, 2021, 42(2): 251–255
PENG Zhengyang, LYV Li, YU Bihui. Dynamic loss function for distant supervision relation extraction[J]. Journal of Chinese computer systems, 2021, 42(2): 251–255
[21] ZHANG Yuhao, ZHONG V, CHEN Danqi, et al. Position-aware attention and supervised data improve slot filling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 35–45.
[22] ZENG Daojian, LIU Kang, LAI Siwei, et al. Relation classification via convolutional deep neural network[C]// COLING 2014—25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers. Stroudsburg: Association for Computational Linguistics, 2014: 2335–2344.
[23] ZENG Daojian, LIU Kang, CHEN Yubo, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2015: 1753–1762.
[24] ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg: Association for Computational Linguistics, 2015: 73–78.
[25] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018–10–11)[2022–05–23]. http://arxiv.org/abs/1810.04805.
[26] 张勇, 高大林, 巩敦卫, 等. 用于关系抽取的注意力图长短时记忆神经网络[J]. 智能系统学报, 2021, 16(3): 518–527
ZHANG Yong, GAO Dalin, GONG Dunwei, et al. Attention graph long short-term memory neural network for relation extraction[J]. CAAI transactions on intelligent systems, 2021, 16(3): 518–527
相似文献/References:
[1]李 蕾,周延泉,钟义信.基于语用的自然语言处理研究与应用初探[J].智能系统学报,2006,1(2):1.
 LI Lei,ZHOU Yan-quan,ZHONG Yi-xin.Pragmatic Information Based NLP Research and Application[J].CAAI Transactions on Intelligent Systems,2006,1():1.
[2]贾真,何大可,杨燕,等.基于弱监督学习的中文网络百科关系抽取[J].智能系统学报,2015,10(1):113.[doi:10.10.3969/j.issn.1673-4785.201311017]
 JIA Zhen,HE Dake,YANG Yan,et al.Relation extraction from Chinese online encyclopedia based on weakly supervised learnin[J].CAAI Transactions on Intelligent Systems,2015,10():113.[doi:10.10.3969/j.issn.1673-4785.201311017]
[3]王定桥,李卫华,杨春燕.从用户需求语句建立问题可拓模型的研究[J].智能系统学报,2015,10(6):865.[doi:10.11992/tis.201507038]
 WANG Dingqiao,LI Weihua,YANG Chunyan.Research on building an extension model from user requirements[J].CAAI Transactions on Intelligent Systems,2015,10():865.[doi:10.11992/tis.201507038]
[4]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,12(5):583.[doi:10.11992/tis.201710016]
 LI Deyi.Artificial intelligence:an accelerator for the development of human society[J].CAAI Transactions on Intelligent Systems,2017,12():583.[doi:10.11992/tis.201710016]
[5]陈培,景丽萍.融合语义信息的矩阵分解词向量学习模型[J].智能系统学报,2017,12(5):661.[doi:10.11992/tis.201706012]
 CHEN Pei,JING Liping.Word representation learning model using matrix factorization to incorporate semantic information[J].CAAI Transactions on Intelligent Systems,2017,12():661.[doi:10.11992/tis.201706012]
[6]张森,张晨,林培光,等.基于用户查询日志的网络搜索主题分析[J].智能系统学报,2017,12(5):668.[doi:10.11992/tis.201706096]
 ZHANG Sen,ZHANG Chen,LIN Peiguang,et al.Web search topic analysis based on user search query logs[J].CAAI Transactions on Intelligent Systems,2017,12():668.[doi:10.11992/tis.201706096]
[7]王一成,万福成,马宁.融合多层次特征的中文语义角色标注[J].智能系统学报,2020,15(1):107.[doi:10.11992/tis.201910012]
 WANG Yicheng,WAN Fucheng,MA Ning.Chinese semantic role labeling with multi-level linguistic features[J].CAAI Transactions on Intelligent Systems,2020,15():107.[doi:10.11992/tis.201910012]
[8]毛明毅,吴晨,钟义信,等.加入自注意力机制的BERT命名实体识别模型[J].智能系统学报,2020,15(4):772.[doi:10.11992/tis.202003003]
 MAO Mingyi,WU Chen,ZHONG Yixin,et al.BERT named entity recognition model with self-attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15():772.[doi:10.11992/tis.202003003]
[9]胡康,何思宇,左敏,等.基于CNN-BLSTM的化妆品违法违规行为分类模型[J].智能系统学报,2021,16(6):1151.[doi:10.11992/tis.202104001]
 HU Kang,HE Siyu,ZUO Min,et al.Classification model for judging illegal and irregular behavior for cosmetics based on CNN-BLSTM[J].CAAI Transactions on Intelligent Systems,2021,16():1151.[doi:10.11992/tis.202104001]
[10]喻波,王志海,孙亚东,等.非结构化文档敏感数据识别与异常行为分析[J].智能系统学报,2021,16(5):932.[doi:10.11992/tis.202104028]
 YU Bo,WANG Zhihai,SUN Yadong,et al.Unstructured document sensitive data identification and abnormal behavior analysis[J].CAAI Transactions on Intelligent Systems,2021,16():932.[doi:10.11992/tis.202104028]
[11]于润羽,杜军平,薛哲,等.面向科技学术会议的命名实体识别研究[J].智能系统学报,2022,17(1):50.[doi:10.11992/tis.202107010]
 YU Runyu,DU Junping,XUE Zhe,et al.Research on named entity recognition for scientific and technological conferences[J].CAAI Transactions on Intelligent Systems,2022,17():50.[doi:10.11992/tis.202107010]
[12]黄河燕,刘啸.面向新领域的事件抽取研究综述[J].智能系统学报,2022,17(1):201.[doi:10.11992/tis.202109045]
 HUANG Heyan,LIU Xiao.A survey on event extraction in new domains[J].CAAI Transactions on Intelligent Systems,2022,17():201.[doi:10.11992/tis.202109045]

备注/Memo

收稿日期:2022-05-23。
基金项目:国家重点研发计划项目 (2018YFC0832102);重庆市教委重点合作项目(HZ2021008); 重庆市自然科学基金项目 (cstc2021jcyj-msxmX0849).
作者简介:胡峰,博士,教授,主要研究方向为粗糙集、粒计算、数据挖掘。主持和参与国家自然科学基金项目4项,参与科技部重点研发计划项目3项,作为参与者获吴文俊人工智能科学技术奖、重庆市自然科学奖各1项,发表学术论文40余篇。 E-mail: hufeng@cqupt. edu.cn;杨新瑞,硕士研究生,主要研究方向为自然语言处理、信息抽取、数据挖掘。E-mail: 1158737962@qq.com;汤成富,硕士研究生,主要研究方向为计算机视觉、图像识别、数据挖掘。E-mail: tangcfmail@163.com
通讯作者:胡峰. E-mail: hufeng@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com