[1]李飞龙,和伟辉,刘立芳,等.结合CWT和LightweightNet的滚动轴承实时故障诊断方法[J].智能系统学报,2023,18(3):496-505.[doi:10.11992/tis.202204020]
 LI Feilong,HE Weihui,LIU Lifang,et al.Real time fault diagnosis method of rolling bearing based on CWT and LightweightNet[J].CAAI Transactions on Intelligent Systems,2023,18(3):496-505.[doi:10.11992/tis.202204020]
点击复制

结合CWT和LightweightNet的滚动轴承实时故障诊断方法

参考文献/References:
[1] LI Chuan, DE OLIVEIRA J V, CERRADA M, et al. A systematic review of fuzzy formalisms for bearing fault diagnosis[J]. IEEE transactions on fuzzy systems, 2019, 27(7): 1362–1382.
[2] 姚峰林, 谢长开, 吕世宁, 等. 基于小波包变换和ELM的滚动轴承故障诊断研究[J]. 安全与环境学报, 2021, 21(6): 2466–2472
YAO Fenglin, XIE Changkai, LYU Shining, et al. Research on fault diagnosis of rolling bearings based on wavelet packet transform and ELM[J]. Journal of safety and environment, 2021, 21(6): 2466–2472
[3] 陈仁祥, 周君, 胡小林, 等. 基于深度Q学习和连续小波变换的旋转机械故障诊断方法[J]. 振动工程学报, 2021, 34(5): 1092–1100
CHEN Renxiang, ZHOU Jun, HU Xiaolin, et al. Fault diagnosis method of rotating machinery based on deep Q-learning and continuous wavelet transform[J]. Journal of vibration engineering, 2021, 34(5): 1092–1100
[4] WANG Xin, MAO Dongxing, LI Xiaodong. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173: 108518.
[5] 潘琳鑫, 巩永旺, 晏生莲. 基于改进一维卷积神经网络的轴承故障诊断方法[J/OL]. 软件导刊: 1?5.[2023?04?05].http://kns.cnki.net/kcms/detail/42.1671.TP.20221207.1119.014.html.
Pan Linxin, Gong Yongwang, Yan Shenglian. A bearing fault diagnosis method based on improved one-dimensional convolutional neural network [J/OL]. Software Guide: 1?5.[2023?04?05].http://kns.cnki.net/kcms/detail/42.1671.TP.20221207.1119.014.html.
[6] YANG Zhibo, ZHANG Junpeng, ZHAO Zhibin, et al. Interpreting network knowledge with attention mechanism for bearing fault diagnosis[J]. Applied soft computing, 2020, 97: 106829.
[7] ZOU Fengqian, ZHANG Haifeng, SANG Shengtian, et al. An anti-noise one-dimension convolutional neural network learning model applying on bearing fault diagnosis[J]. Measurement, 2021, 186: 110236.
[8] ZHAO Jing, YANG Shaopu, LI Qiang, et al. A new bearing fault diagnosis method based on signal-to-image mapping and convolutional neural network[J]. Measurement, 2021, 176: 109088.
[9] BAI Ruxue, XU Quansheng, MENG Zong, et al. Rolling bearing fault diagnosis based on multi-channel convolution neural network and multi-scale clipping fusion data augmentation[J]. Measurement, 2021, 184: 109885.
[10] 高淑芝, 裴志明, 张义民. 动态自适应学习率优化的卷积神经网络轴承故障诊断方法[J/OL]. 机械设计与制造: 1?5.[2023?04?05].DOI:10.19356/j.cnki.1001-3997.20230210.031.
GAO Shuzhi, PEI Zhiming, ZHANG Yimin. Dynamic adaptive learning rate optimized convolutional neural network bearing fault diagnosis method [J/OL]. Mechanical design and manufacturing: 1?5.[2023?04?05].DOI:10.19356/j.cnki.1001-3997.20230210.031.
[11] 李欢, 吕勇, 袁锐, 等. 基于深度卷积神经网络的滚动轴承迁移故障诊断[J]. 组合机床与自动化加工技术, 2023(2): 90–94
LI Huan, LYU Yong, YUAN Rui, et al. Fault diagnosis of rolling bearing migration based on deep convolution neural network[J]. Modular machine tool and automatic processing technology, 2023(2): 90–94
[12] MENG Zong, ZHAN Xuyang, LI Jing, et al. An enhancement denoising autoencoder for rolling bearing fault diagnosis[J]. Measurement, 2018, 130: 448–454.
[13] CLAESSENS B J, VRANCX P, RUELENS F. Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control[J]. IEEE transactions on smart grid, 2018, 9(4): 3259–3269.
[14] ZOU Yisheng, LIU Yongzhi, DENG Jialin, et al. A novel transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2021, 171: 108767.
[15] HAO Shijie, GE Fengxiang, LI Yanmiao, et al. Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks[J]. Measurement, 2020, 159: 107802.
[16] XU Zifei, MEI Xuan, WANG Xinyu, et al. Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors[J]. Renewable energy, 2022, 182: 615–626.
[17] WU Zhenghong, JIANG Hongkai, LIU Shaowei, et al. A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis[J]. ISA transactions, 2022, 129: 505–524.
[18] XU Yang, LI Zhixiong, WANG Shuqing, et al. A hybrid deep-learning model for fault diagnosis of rolling bearings[J]. Measurement, 2021, 169: 108502.
[19] PENG Xu, ALEXANDER H K. RALF B, et al. Measurement of the topological Chern number by continuous probing of a qubit subject to a slowly varying Hamiltonian[EB/OL]. (2017?04?03)[2022?04?12].https://arxiv.org/abs/1704.0486.
[20] ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848?6856.
[21] YAO Dechen, LIU Hengchang, YANG Jianwei, et al. A lightweight neural network with strong robustness for bearing fault diagnosis[J]. Measurement, 2020, 159: 107756.
[22] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510?4520.
[23] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[24] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987?5995.
[25] SMITH W A, RANDAL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015(64-65): 100–131.
相似文献/References:
[1]马大中,张化光,冯 健,等.一种基于多传感器信息融合的故障诊断方法[J].智能系统学报,2009,4(1):72.
 MA Da-zhong,ZHANG Hua-guang,FENG Jian,et al.A fault diagnosis method based on multi-sensor information fusion[J].CAAI Transactions on Intelligent Systems,2009,4():72.
[2]齐俊桐,韩建达.旋翼飞行机器人故障诊断与容错控制技术综述[J].智能系统学报,2007,2(2):31.
 QI Jun-tong,HAN Jian-da.Fault diagnosis and faulttolerant control of rotorcraft flying robots: a survey[J].CAAI Transactions on Intelligent Systems,2007,2():31.
[3]李红芳,等.一种新型免疫网络学习算法在故障诊断中的应用[J].智能系统学报,2008,3(5):449.
 L IHong-fang,ZHANG Qing-hua,et al.Application of a novel immune network learn ing algor ithm to fault diagnosis[J].CAAI Transactions on Intelligent Systems,2008,3():449.
[4]曲彦光,张勤,朱群雄.动态不确定因果图在化工系统动态故障诊断中的应用[J].智能系统学报,2015,10(3):354.[doi:10.3969/j.issn.1673-4785.201503012]
 QU Yanguang,ZHANG Qin,ZHU Qunxiong.Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2015,10():354.[doi:10.3969/j.issn.1673-4785.201503012]
[5]文天柱,许爱强,邓露.可拓否定选择算法及其在故障诊断中的应用[J].智能系统学报,2015,10(3):488.[doi:10.3969/j.issn.1673-4785.201402020]
 WEN Tianzhu,XU Aiqiang,DENG Lu.A new negative selection algorithm based on Extenics and its application in fault diagnosis[J].CAAI Transactions on Intelligent Systems,2015,10():488.[doi:10.3969/j.issn.1673-4785.201402020]
[6]杨佳婧,张勤,朱群雄.动态不确定因果图在化工过程故障诊断中的应用[J].智能系统学报,2014,9(2):154.[doi:10.3969/j.issn.1673-4785.201402012]
 YANG Jiajing,ZHANG Qin,ZHU Qunxiong.Application of Dynamic Uncertain Causality Graphto fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2014,9():154.[doi:10.3969/j.issn.1673-4785.201402012]
[7]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报,2014,9(2):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9():204.[doi:10.3969/j.issn.1673-4785.201310026]
[8]夏飞,马茜,张浩,等.改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J].智能系统学报,2017,12(4):526.[doi:10.11992/tis.201605001]
 XIA Fei,MA Xi,ZHANG Hao,et al.Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,12():526.[doi:10.11992/tis.201605001]
[9]齐小刚,牛红曼,刘兴成,等.多层信息网络故障定位综述[J].智能系统学报,2019,14(1):44.[doi:10.11992/tis.201804062]
 QI Xiaogang,NIU Hongman,LIU Xingcheng,et al.Survey of fault localization in multilayer information networks[J].CAAI Transactions on Intelligent Systems,2019,14():44.[doi:10.11992/tis.201804062]
[10]张婷,齐小刚.移动通信网络的中性集故障诊断方法研究[J].智能系统学报,2020,15(5):864.[doi:10.11992/tis.201906031]
 ZHANG Ting,QI Xiaogang.Research on neutral set fault diagnosis method for mobile communication networks[J].CAAI Transactions on Intelligent Systems,2020,15():864.[doi:10.11992/tis.201906031]

备注/Memo

收稿日期:2022-04-12。
作者简介:李飞龙,硕士研究生,主要研究方向为数据处理与分析、装备故障诊断和故障预测;和伟辉,硕士研究生,主要研究方向为健康管理与故障诊断;刘立芳,教授,博士,主要研究方向为数据处理与智能计算。主持完成国家自然科学基金青年项目、预研领域基金项目等,参与十三五预研项目、教育部–中国移动联合基金项目、自主可控软件示范项目、企业重大技术攻关项目等十余项
通讯作者:刘立芳.E-mail:lfliu@mail.xidian.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com