[1]穆凌霞,田璐,冯楠,等.改进滑动粗粒化和集成波动色散熵的故障诊断方法[J].智能系统学报,2025,20(2):363-375.[doi:10.11992/tis.202401013]
 MU Lingxia,TIAN Lu,FENG Nan,et al.Fault diagnosis using improved sliding coarsening and integrated fluctuation-based dispersion entropy[J].CAAI Transactions on Intelligent Systems,2025,20(2):363-375.[doi:10.11992/tis.202401013]
点击复制

改进滑动粗粒化和集成波动色散熵的故障诊断方法

参考文献/References:
[1] 李飞龙, 和伟辉, 刘立芳, 等. 结合CWT和LightweightNet的滚动轴承实时故障诊断方法[J]. 智能系统学报, 2023, 18(3): 496-505.
LI Feilong, HE Weihui, LIU Lifang, et al. Real time fault diagnosis method of rolling bearing based on CWT and LightweightNet[J]. CAAI transactions on intelligent systems, 2023, 18(3): 496-505.
[2] SUN Jiedi, YAN Changhong, WEN Jiangtao. Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning[J]. IEEE transactions on instrumentation and measurement, 2018, 67(1): 185-195.
[3] DING Xiaoxi, HE Qingbo. Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J]. IEEE transactions on instrumentation and measurement, 2017, 66(8): 1926-1935.
[4] CHEN Junbin, HUANG Ruyi, ZHAO Kun, et al. Multiscale convolutional neural network with feature alignment for bearing fault diagnosis[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 3517010.
[5] HU Qin, SI Xiaosheng, QIN Aisong, et al. Machinery fault diagnosis scheme using redefined dimensionless indicators and mRMR feature selection[J]. IEEE access, 2020, 8: 40313-40326.
[6] YANG Yang, LIU Hui, HAN Lijin, et al. A feature extraction method using VMD and improved envelope spectrum entropy for rolling bearing fault diagnosis[J]. IEEE sensors journal, 2023, 23(4): 3848-3858.
[7] SHANNON C E. A mathematical theory of communication[J]. The bell system technical journal, 1948, 27(3): 379-423.
[8] LI Yongbo, WANG Xianzhi, SI Shubin, et al. Entropy based fault classification using the case western reserve university data: a benchmark study[J]. IEEE transactions on reliability, 2020, 69(2): 754-767.
[9] HUO Zhiqiang, MARTíNEZ-GARCíA M, ZHANG Yu, et al. Entropy measures in machine fault diagnosis: insights and applications[J]. IEEE transactions on instrumentation and measurement, 2020, 69(6): 2607-2620.
[10] RICHMAN J S, MOORMAN J R. Physiological timeseries analysis[J]. American journal of physiology heart and circulatory physiology, 2000, 278(6): H2039-49.
[11] BANDT C, POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical review letters, 2002, 88(17): 174102.
[12] ZHOU Shenghan, QIAN Silin, CHANG Wenbing, et al. A novel bearing multi-fault diagnosis approach based on weighted permutation entropy and an improved SVM ensemble classifier[J]. Sensors, 2018, 18(6): 1934.
[13] LI Rui, RAN Chao, ZHANG Bin, et al. Rolling bearings fault diagnosis based on improved complete ensemble empirical mode decomposition with adaptive noise, nonlinear entropy, and ensemble SVM[J]. Applied sciences, 2020, 10(16): 5542.
[14] 蒋佳炜, 胡以怀, 柯赟, 等. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击, 2020, 39(4): 273-277,298.
JIANG Jiawei, HU Yihuai, KE Yun, et al. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of vibration and shock, 2020, 39(4): 273-277,298.
[15] CHEN Weiting, ZHUANG Jun, YU Wangxin, et al. Measuring complexity using FuzzyEn, ApEn, and SampEn[J]. Medical engineering & physics, 2009, 31(1): 61-68.
[16] 卿铭, 孙晓梅. 一种新的聚类有效性函数: 模糊划分的模糊熵[J]. 智能系统学报, 2015, 10(1): 75-80.
QING Ming, SUN Xiaomei. A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J]. CAAI transactions on intelligent systems, 2015, 10(1): 75-80.
[17] AGGARWAL M. Bridging the gap between probabilistic and fuzzy entropy[J]. IEEE transactions on fuzzy systems, 2020, 28(9): 2175-2184.
[18] 候双珊, 郑近德, 潘海洋, 等. 基于复合多尺度交叉模糊熵的行星齿轮箱故障诊断[J]. 振动与冲击, 2023, 42(20): 130-135,171.
HOU Shuangshan, ZHENG Jinde, PAN Haiyang, et al. Planetary gearbox fault diagnosis based on composite multi-scale cross fuzzy entropy[J]. Journal of vibration and shock, 2023, 42(20): 130-135,171.
[19] WANG Yuting, WANG Dong. Investigations on sample entropy and fuzzy entropy for machine condition monitoring: revisited[J]. Measurement science and technology, 2023, 34(12): 125104.
[20] ROSTAGHI M, AZAMI H. Dispersion entropy: a measure for time-series analysis[J]. IEEE signal processing letters, 2016, 23(5): 610-614.
[21] COSTA M, GOLDBERGER A L, PENG C K. Multiscale entropy analysis of biological signals[J]. Physical review E, Statistical, nonlinear, and soft matter physics, 2005, 71(2): 021906.
[22] AZAMI H, JESCUDERO E. Amplitude and fluctuate-on-based dispersion entropy[J]. Entropy, 2018, 20(3): 1-21.
[23] ZHANG Zhiming, FU Guangjie. Bearing fault detection based on improved multiscale dispersion entropy and single value classification[J]. IEEE sensors journal, 2022, 22(16): 15825-15833.
[24] TANG Zhuang, LIU Jie, LI Chaofeng. Improved multivariate hierarchical multiscale dispersion entropy: a new method for industrial rotating machinery fault diagnosis[J]. IEEE access, 2022, 10: 102842-102859.
[25] YAN Xiaoan, JIA Minping. Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection[J]. Knowledge-based systems, 2019, 163: 450-471.
[26] 宫建成, 韩涛, 杨小强, 等. 采用滑动平均多元多尺度色散熵的液压泵故障诊断方法[J]. 陆军工程大学学报, 2023, 2(1): 45-54.
GONG Jiancheng, HAN Tao, YANG Xiaoqiang, et al. Fault diagnosis of hydraulic pump adopting moving average multivariate multiscale dispersion entropy[J]. Journal of Army Engineering University of PLA, 2023, 2(1): 45-54.
[27] ZHAO Shouwang, CHEN Yu, REHMAN A U, et al. Detection of interturn short-circuit faults in DFIGs based on external leakage flux sensing and the VMD-RCMDE analytical method[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 3516312.
[28] ZHENG Jinde, PAN Haiyang. Use of generalized refined composite multiscale fractional dispersion entropy to diagnose the faults of rolling bearing[J]. Nonlinear dynamics, 2020, 101(2): 1417-1440.
[29] QIN Aisong, MAO Hanling, HU Qin, et al. Bearing fault diagnosis method based on ensemble composite multi-scale dispersion entropy and density peaks clustering[J]. IEEE access, 2021, 9: 24373-24389.
[30] AZAMI H, SANEI S, RAJJI T K. Ensemble entropy: a low bias approach for data analysis[J]. Knowledge-based systems, 2022, 256: 109876.
[31] XUE Qiang, XU Boyu, HE Changbo, et al. Feature extraction using hierarchical dispersion entropy for rolling bearing fault diagnosis[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 3521311.
[32] Jiangnan University. Jiangnan University bearing datasets[EB/OL]. (2023-05-03)[2024-01-09]. http://www.52phm.cn/datasets/bear/Bearing-data-set-of-Jiangnan-University.html.
[33] SHAO Siyu, McAleer S, YAN Ruqiang, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE transactions on industrial informatics, 2019, 15(4): 2446-2455.
[34] 王丽娟, 丁世飞. 一种基于ELM-AE特征表示的谱聚类算法[J]. 智能系统学报, 2021, 16(3): 560-566.
WANG Lijuan, DING Shifei. A spectral clustering algorithm based on ELM-AE feature representation[J]. CAAI transactions on intelligent systems, 2021, 16(3): 560-566.

备注/Memo

收稿日期:2024-1-9。
基金项目:国家自然科学基金项目(62373299, 62127809); 陕西省重点研发计划项目(2024GX-YBXM-093); 中国博士后科学基金项目(2022MD723834); 陕西省科协青年人才托举计划项目(20210114).
作者简介:穆凌霞,副教授,主要研究方向为故障诊断与容错控制。主持/参与国家自然科学基金项目5 项,主持省部级项目、企业委托技术开发项目7项,获国家发明专利授权9项,发表学术论文 30 余篇。E-mail:mulingxia@xaut.edu.cn;田璐,硕士研究生,主要研究方向为故障诊断。E-mail:tianlu@stu.xaut.edu.cn;冯楠,工程师,主要研究方向为工业系统故障诊断与健康管理。参与国家级、省部级项目4项,获国家发明专利授权10余项,发表学术论文10余篇。E-mail:fengnan@ustb.edu.cn。
通讯作者:冯楠. E-mail:fengnan@ustb.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com