[1]王兴武,雷涛,王营博,等.基于多模态互补特征学习的遥感影像语义分割[J].智能系统学报,2022,17(6):1123-1133.[doi:10.11992/tis.202201025]
 WANG Xingwu,LEI Tao,WANG Yingbo,et al.Semantic segmentation of remote sensing image based on multimodal complementary feature learning[J].CAAI Transactions on Intelligent Systems,2022,17(6):1123-1133.[doi:10.11992/tis.202201025]
点击复制

基于多模态互补特征学习的遥感影像语义分割

参考文献/References:
[1] YUAN X, SHI J, GU L. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert systems with applications, 2021, 169: 114417–114430.
[2] DING Lei, TANG Hao, BRUZZONE L. LANet: local attention embedding to improve the semantic segmentation of remote sensing images[J]. IEEE transactions on geoscience and remote sensing, 2021, 59(1): 426–435.
[3] FU Gang, LIU Changjun, ZHOU Rong, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote sensing, 2017, 9(5): 498–518.
[4] LI Jinglun, XIU Jiapeng, YANG Zhengqiu, et al. Dual path attention net for remote sensing semantic image segmentation[J]. ISPRS international journal of geo-information, 2020, 9(10): 571–591.
[5] LI Haifeng, QIU Kaijian, CHEN Li, et al. SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J]. IEEE geoscience and remote sensing letters, 2021, 18(5): 905–909.
[6] ZHANG Jing, LIN Shaofu, DING Lei, et al. Multi-scale context aggregation for semantic segmentation of remote sensing images[J]. Remote sensing, 2020, 12(4): 701–716.
[7] DONG Rongsheng, PAN Xiaoquan, LI Fengying. DenseU-net-based semantic segmentation of small objects in urban remote sensing images[J]. IEEE access, 2019, 7: 65347–65356.
[8] LIU Shuo, DING Wenrui, LIU Chunhui, et al. ERN: edge loss reinforced semantic segmentation network for remote sensing images[J]. Remote sensing, 2018, 10(9): 1339.
[9] CHEN Kaiqiang, FU Kun, GAO Xin, et al. Effective fusion of multi-modal data with group convolutions for semantic segmentation of aerial imagery[C]//2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 3911-3914.
[10] SUN Weiwei, WANG Ruisheng. Fully convolutional networks for semantic segmentation of very high resolution remotely sensed images combined with DSM[J]. IEEE geoscience and remote sensing letters, 2018, 15(3): 474–478.
[11] CAO Zhiying, FU Kun, LU Xiaode, et al. End-to-end DSM fusion networks for semantic segmentation in high-resolution aerial images[J]. IEEE geoscience and remote sensing letters, 2019, 16(11): 1766–1770.
[12] HAZIRBAS C, MA Lingni, DOMOKOS C, et al. FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture[M]//Computer Vision-ACCV 2016. Cham: Springer International Publishing, 2017: 213-228.
[13] AUDEBERT N, LE SAUX B, LEFèVRE S. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks[M]//Computer Vision-ACCV 2016. Cham: Springer International Publishing, 2017: 180-196.
[14] QIN Rongjun, FANG Wei. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization[J]. Photogrammetric engineering & remote sensing, 2014, 80(9): 873–883.
[15] CAI Ziyun, HAN Jungong, LIU Li, et al. RGB-D datasets using microsoft kinect or similar sensors: a survey[J]. Multimedia tools and applications, 2017, 76(3): 4313–4355.
[16] ZHANG Wenkai, HUANG Hai, SCHMITZ M, et al. Effective fusion of multi-modal remote sensing data in a fully convolutional network for semantic labeling[J]. Remote sensing, 2017, 10(2): 52–65.
[17] WEINMANN M, WEINMANN M. Geospatial computer vision based on multi-modal data—how valuable is shape information for the extraction of semantic information?[J]. Remote sensing, 2017, 10(2): 2–21.
[18] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016 : 770-778.
[19] WANG Yuhao, LIANG Binxiu, DING Meng, et al. Dense semantic labeling with atrous spatial pyramid pooling and decoder for high-resolution remote sensing imagery[J]. Remote sensing, 2018, 11(1): 20–37.
[20] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834–848.
[21] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239.
[22] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[23] YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018 : 3684-3692.
[24] SHI Lukui, WANG Ziyuan, PAN Bin, et al. An end-to-end network for remote sensing imagery semantic segmentation via joint pixel- and representation-level domain adaptation[J]. IEEE geoscience and remote sensing letters, 2021, 18(11): 1896–1900.
[25] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144.
[26] YAN Hongliang, DING Yukang, LI Peihua, et al. Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017 : 945-954.
[27] GRETTON A, SEJDINOVIC D, STRATHMANN H, et al. Optimal kernel choice for large-scale two-sample tests[C]//Annual Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2012: 1205-1213.
[28] ROTTENSTEINE F, SOHN G, GEREK M, et al. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction[J]. ISPRS journal of photogrammetry and remote sensing, 2014, 93: 256–271.
[29] LIU Yifan, ZHU Qigang, CAO Feng, et al. High-resolution remote sensing image segmentation framework based on attention mechanism and adaptive weighting[J]. International journal of geo-information, 2021, 10(4): 241–258.
[30] CAO Zhiying, DIAO Wenhui, SUN Xian, et al. C3Net: cross-modal feature recalibrated, cross-scale semantic aggregated and compact network for semantic segmentation of multi-modal high-resolution aerial images[J]. Remote sensing, 2021, 13(3): 528–545.
[31] LIU Siyu, HE Changtao, BAI Haiwei, et al. Light-weight attention semantic segmentation network for high-resolution remote sensing images[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 2595-2598. .
[32] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
[33] AUDEBERT N, LE SAUX B, LEFèVRE S. Beyond RGB: very high resolution urban remote sensing with multimodal deep networks[J]. ISPRS journal of photogrammetry and remote sensing, 2018, 140: 20–32.
[34] PENG Cheng, LI Yangyang, JIAO Licheng, et al. Densely based multi-scale and multi-modal fully convolutional networks for high-resolution remote-sensing image semantic segmentation[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(8): 2612–2626.
相似文献/References:
[1]夏 凡,王 宏.基于局部异常行为检测的欺骗识别研究[J].智能系统学报,2007,2(5):12.
 XIA Fan,WANG Hong.Methodologies for deception detection based on abnormal b ehavior[J].CAAI Transactions on Intelligent Systems,2007,2():12.
[2]杨 戈,刘 宏.视觉跟踪算法综述[J].智能系统学报,2010,5(2):95.
 YANG Ge,LIU Hong.Survey of visual tracking algorithms[J].CAAI Transactions on Intelligent Systems,2010,5():95.
[3]刘宏,李哲媛,许超.视错觉现象的分类和研究进展[J].智能系统学报,2011,6(1):1.
 LIU Hong,LI Zheyuan,XU Chao.The categories and research advances of visual illusions[J].CAAI Transactions on Intelligent Systems,2011,6():1.
[4]叶果,程洪,赵洋.电影中吸烟活动识别[J].智能系统学报,2011,6(5):440.
 YE Guo,CHENG Hong,ZHAO Yang.moking recognition in movies[J].CAAI Transactions on Intelligent Systems,2011,6():440.
[5]史晓鹏,何为,韩力群.采用Hough变换的道路边界检测算法[J].智能系统学报,2012,7(1):81.
 SHI Xiaopeng,HE Wei,HAN Liqun.A road edge detection algorithm based on the Hough transform[J].CAAI Transactions on Intelligent Systems,2012,7():81.
[6]顾照鹏,刘宏.单目视觉同步定位与地图创建方法综述[J].智能系统学报,2015,10(4):499.[doi:10.3969/j.issn.1673-4785.201503003]
 GU Zhaopeng,LIU Hong.A survey of monocular simultaneous localization and mapping[J].CAAI Transactions on Intelligent Systems,2015,10():499.[doi:10.3969/j.issn.1673-4785.201503003]
[7]赵军,於俊,汪增福.基于改进逆向运动学的人体运动跟踪[J].智能系统学报,2015,10(4):548.[doi:10.3969/j.issn.1673-4785.201403032]
 ZHAO Jun,YU Jun,WANG Zengfu.Human motion tracking based on an improved inverse kinematics[J].CAAI Transactions on Intelligent Systems,2015,10():548.[doi:10.3969/j.issn.1673-4785.201403032]
[8]姬晓飞,王昌汇,王扬扬.分层结构的双人交互行为识别方法[J].智能系统学报,2015,10(6):893.[doi:10.11992/tis.201505006]
 JI Xiaofei,WANG Changhui,WANG Yangyang.Human interaction behavior-recognition method based on hierarchical structure[J].CAAI Transactions on Intelligent Systems,2015,10():893.[doi:10.11992/tis.201505006]
[9]方鹏,李贤,汪增福.运用核聚类和偏最小二乘回归的歌唱声音转换[J].智能系统学报,2016,11(1):55.[doi:10.11992/tis.201506022]
 FANG Peng,LI Xian,WANG Zengfu.Conversion of singing voice based on kernel clustering and partial least squares regression[J].CAAI Transactions on Intelligent Systems,2016,11():55.[doi:10.11992/tis.201506022]
[10]李雪,蒋树强.智能交互的物体识别增量学习技术综述[J].智能系统学报,2017,12(2):140.[doi:10.11992/tis.201701006]
 LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12():140.[doi:10.11992/tis.201701006]

备注/Memo

收稿日期:2022-01-16。
基金项目:国家自然科学基金项目(61871259;61861024;62201334);陕西省重点研发计划项目(2021ZDLGY08-07);陕西省人工智能联合实验室项目(2020SS-03).
作者简介:王兴武,硕士研究生,主要研究方向为人工智能、深度学习;雷涛,教授,博士生导师,陕西科技大学电子信息与人工智能学院副院长,IEEE高级会员,主要研究方向为计算机视觉、机器学习。发表学术论文90余篇;王营博,讲师,博士,主要研究方向为散射环境下图像复原与场景感知
通讯作者:雷涛.E-mail:leitao@sust.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com