[1]何国豪,翟涌,龚建伟,等.车载双目视觉动态级联修正实时立体匹配网络[J].智能系统学报,2022,17(6):1145-1153.[doi:10.11992/tis.202111013]
 HE Guohao,ZHAI Yong,GONG Jianwei,et al.Real-time stereo matching network for vehicle binocular vision based on dynamic cascade correction[J].CAAI Transactions on Intelligent Systems,2022,17(6):1145-1153.[doi:10.11992/tis.202111013]
点击复制

车载双目视觉动态级联修正实时立体匹配网络

参考文献/References:
[1] MARTULL S, PERIS M, FUKUI K. Realistic CG stereo image dataset with ground truth disparity maps[J]. Technical report of ieice prmu, 2012(430): 117–118.
[2] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(2): 328–341.
[3] ZHANG Feihu, PRISACARIU V, YANG Ruigang, et al. GA-net: guided aggregation net for end-to-end stereo matching[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019 : 185-194.
[4] 张娣. 基于双目视觉的道路场景语义分割技术研究[D]. 南京: 南京理工大学, 2020.
ZHANG Di. Research on semantic segmentation of road scene based on binocular vision[D]. Nanjing: Nanjing University of Science and Technology, 2020.
[5] ?BONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. Journal of machine learning research, 2016, 17: 1–32.
[6] SEKI A, POLLEFEYS M. SGM-nets: semi-global matching with neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017 : 6640-6649.
[7] 王笛. 基于双目立体匹配的三维视觉方法研究[D]. 西安: 西安理工大学, 2021.
WANG Di. Research on 3D vision method based on binocular stereo matching[D]. Xi’an: Xi’an University of Technology, 2021.
[8] 吴玉晗. 基于双目立体视觉的立体匹配算法研究[D]. 成都: 电子科技大学, 2021.
WU Yuhan. Research on stereo matching algorithm based on binocular stereo vision[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[9] KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 66-75.
[10] CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5410-5418.
[11] XU Haofei, ZHANG Juyong. Aanet: adaptive aggregation network for efficient stereo matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1959-1968.
[12] CHANG Jiaren, CHANG Peichun, CHEN Yongsheng. Attention-aware feature aggregation for real-time stereo matching on edge devices[C]//Asian Conference on Computer Vision. Cham: Springer, 2021: 365-380.
[13] MENZE M, GEIGER A. Object scene flow for autonomous vehicles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3061-3070.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90.
[15] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[16] HAASE D, AMTHOR M. Rethinking depthwise separable convolutions: how intra-kernel correlations lead to improved MobileNets[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020 : 14588-14597.
[17] 郑秋梅, 温阳, 王风华. 基于注意力机制和可分离卷积的双目立体匹配算法[J]. 微电子学与计算机, 2021, 38(5): 42–47
ZHENG Qiumei, WEN Yang, WANG Fenghua. Stereo matching based on attention mechanism and separable convolution[J]. Microelectronics & computer, 2021, 38(5): 42–47
[18] CHEN Sheng, LIU Yang, GAO Xiang, et al. MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices[C]//Chinese Conference on Biometric Recognition. Cham: Springer, 2018: 428-438.
[19] 吴俊劼, 陈震, 张聪炫, 等. 基于特征级联卷积网络的双目立体匹配[J]. 电子学报, 2021, 49(4): 690–695
WU Junjie, CHEN Zhen, ZHANG Congxuan, et al. Binocular stereo matching based on feature cascade convolutional network[J]. Acta electronica sinica, 2021, 49(4): 690–695
[20] MAYER N, ILG E, HAUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 4040-4048.
[21] 龚伟, 秦岭, 任高峰, 等. 基于多维特征融合的双目立体匹配算法研究[J]. 激光与光电子学进展, 2020, 57(16): 299–306
GONG Wei, QIN Ling, REN Gaofeng, et al. Binocular stereo matching algorithm based on multidimensional feature fusion[J]. Laser & optoelectronics progress, 2020, 57(16): 299–306
[22] KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30)[2021-11-06]. https://arxiv. org/abs/1412.6980.
[23] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[24] NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in neurorobotics, 2013, 7: 21.
[25] DUGGAL S, WANG Shenlong, MA W C, et al. DeepPruner: learning efficient stereo matching via differentiable PatchMatch[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019 : 4383-4392.
相似文献/References:
[1]蔡自兴,王 勇,王 璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(1):52.
 CAI Zi-xing,WANG Yong,WANG Lu.Corner clustering based detection and recognition of natural landmark for mobile robot[J].CAAI Transactions on Intelligent Systems,2006,1():52.
[2]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]王杰,蒋明敏,花晓慧,等.基于投影直方图匹配的双目视觉跟踪算法[J].智能系统学报,2015,10(5):775.[doi:10.11992/tis.201410009]
 WANG Jie,JIANG Mingmin,HUA Xiaohui,et al.Binocular object tracking method using projection histogram matching[J].CAAI Transactions on Intelligent Systems,2015,10():775.[doi:10.11992/tis.201410009]
[5]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[6]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[7]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[8]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[9]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[10]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]

备注/Memo

收稿日期:2021-11-06。
基金项目:国家自然科学基金项目(U19A2083,61703041).
作者简介:何国豪,硕士研究生,主要研究方向为智能驾驶、智能系统视觉感知;翟涌,副教授,主要研究方向为车辆电子控制。获得授权发明专利5项,发表学术论文10篇;龚建伟,教授,汽车研究所长,主要研究方向为地面无人平台相关技术。主持国家级或省部级项目10余项,授权发明专利30项。发表学术论文13篇,参编专著和教材5部
通讯作者:龚建伟.E-mail:gongjianwei@bit.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com